


Statistics and Scientific Method

 Statistics and Scientific Method , First Edition, Peter J. Diggle, Amanda G. Chetwynd  © Peter J. Diggle,

Amanda G. Chetwynd  2011. Published in 2011 by Oxford University Press  



Statistics and Scientific Method

An Introduction for Students and Researchers

PETER J. DIGGLE

and

AMANDA G. CHETWYND

Lancaster University

1



3
Great Clarendon Street, Oxford ox2 6dp

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Peter J. Diggle and Amanda G. Chetwynd 2011

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First published 2011

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Data available

Typeset by SPI Publisher Services, Pondicherry, India
Printed in Great Britain
on acid-free paper by

CPI Antony Rowe, Chippenham, Wiltshire

ISBN 978–0–19–954318–2 (Hbk.)
978–0–19–954319–9 (Pbk.)

1 3 5 7 9 10 8 6 4 2



To Mike, especially for Chapter 8

 Statistics and Scientific Method , First Edition, Peter J. Diggle, Amanda G. Chetwynd  © Peter J. Diggle,

Amanda G. Chetwynd  2011. Published in 2011 by Oxford University Press  



Acknowledgements

Most of the diagrams in the book were produced using R. For the remainder,
we thank the following people and organizations:

Figure 2.1. Institute of Astronomy library, University of Cambridge

Figure 4.1. Professor Andy Cossins, University of Liverpool

Figure 5.1. copyright Rothamsted Research Ltd.

Figure 5.3. copyright photograph by Antony Barrington Brown, reproduced
with the permission of the Fisher Memorial Trust

Figure 10.1. Devra Davis (www.environmentalhealthtrust.org)

We have cited original sources of data in the text where possible, but
would like here to add our thanks to: Dr Bev Abram for the Arabadopsis
microarray data; Professor Nick Hewitt for the Bailrigg daily temperature
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Preface

Statistics is the science of collecting and interpreting data. This makes it
relevant to almost every kind of scientific investigation. In practice, most
scientific data involve some degree of imprecision or uncertainty, and one
consequence of this is that data from past experiments cannot exactly
predict the outcome of a future experiment. Dealing with uncertainty is
a cornerstone of the statistical method, and distinguishes it from math-
ematical method. The mathematical method is deductive: its concern is
the logical derivation of consequences from explicitly stated assumptions.
Statistical method is inferential: given empirical evidence in the form of
data, its goal is to ask what underlying natural laws could have generated
the data; and it is the imprecision or uncertainty in the data which
makes the inferential process fundamentally different from mathematical
deduction.

As a simple example of this distinction, consider a system with a single
variable input, x, and a consequential output, y. A scientific theory asserts
that the output is a linear function of the input, meaning that experimental
values of x and y will obey the mathematical relationship

y = a+ b× x

for suitable values of two constants, a and b. To establish the correct values
of a and b, we need only run the experiment with two different values of the
input, x, measure the corresponding values of the output, y, plot the two
points (x, y), connect them with a straight line and read off the intercept,
a, and slope, b, of the line. If the truth of the assumed mathematical model
is in doubt, we need only run the experiment with a third value of the
input, measure the corresponding output and add a third point (x, y) to
our plot. If the three points lie on a straight line, the model is correct,
and conversely. However, if each experimental output is subject to any
amount, however small, of unpredictable fluctuation about the underlying
straight-line relationship, then logically we can neither determine a and b
exactly, nor establish the correctness of the model, however many times
we run the experiment. What we can do, and this is the essence of the
statistical method, is estimate a and b with a degree of uncertainty which
diminishes as the number of runs of the experiment increases, and establish
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viii PREFACE

the extent to which the postulated model is reasonably consistent with the
experimental data.

In some areas of science, unpredictable fluctuations in experimental
results are a by-product of imperfect experimental technique. This is
presumably the thinking behind the physicist Ernest Rutherford’s much-
quoted claim that ‘If your experiment needs statistics, you ought to have
done a better experiment.’ Perhaps for this reason, in the physical sciences
unpredictable fluctuations are often described as ‘errors’. In other areas
of science, unpredictability is an inherent part of the underlying scientific
phenomenon, and need carry no pejorative associations. For example, in
medicine different patients show different responses to a given treatment for
reasons that cannot be wholly explained by measurable differences amongst
them, such as their age, weight or other physiological characteristics. More
fundamentally, in biology unpredictability is an inherent property of the
process of transmission and recombination of genetic material from parent
to offspring, and is essential to Darwinian evolution.

It follows that the key idea in the statistical method is to understand
variation in data and in particular to understand that some of the variation
which we see in experimental results is predictable, or systematic, and some
unpredictable, or random. Most formal treatments of statistics tend, in the
authors’ opinion, to overemphasize the latter, with a consequential focus
on the mathematical theory of probability. This is not to deny that an
understanding of probability is of central importance to the statistics dis-
cipline, but from the perspective of a student attending a service course in
statistics an emphasis on probability can make the subject seem excessively
technical, obscuring its relevance to substantive science. Even worse, many
service courses in statistics respond to this by omitting the theory and
presenting only a set of techniques and formulae, thereby reducing the
subject to the status of a recipe book.

Our aim in writing this book is to provide an antidote to technique-
oriented service courses in statistics. Instead, we have tried to emphasize
statistical concepts, to link statistical method to scientific method, and to
show how statistical thinking can benefit every stage of scientific inquiry,
from designing an experimental or observational study, through collecting
and processing the resulting data, to interpreting the results of the data-
processing in their proper scientific context.

Each chapter, except Chapters 1 and 3, begins with a non-technical
discussion of a motivating example, whose substantive content is indicated
in the chapter subtitle. Our examples are drawn largely from the biological,
biomedical and health sciences, because these are the areas of application
with which we are most familiar in our own research. We do include
some examples from other areas of science, and we hope that students
whose specific scientific interests are not included in the subject matter
of our examples will be able to appreciate how the underlying statistical
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concepts are nevertheless relevant, and adaptable, to their own areas of
interest.

Our book has its origins in a service course at Lancaster University
which we have delivered over a period of several years to an audience of
first-year postgraduate students in science and technology. The scientific
maturity of students at this level, by comparison with undergraduates,
undoubtedly helps our approach to succeed. However, we do not assume
any prior knowledge of statistics, nor do we make mathematical demands on
our readers beyond a willingness to get to grips with mathematical notation
(itself a way of encouraging precision of thought) and an understanding of
basic algebra.

Even the simplest of statistical calculations requires the use of a com-
puter; and if tedium is to be avoided, the same applies to graphical presen-
tation of data. Our book does not attempt to teach statistical computation
in a systematic way. Many of the exercises could be done using pencil, paper
and pocket calculator, although we hope and expect that most readers of
the book will use a computer.

We have, however, chosen to present our material in a way that will
encourage readers to use the R software environment (see the website
www.r-project.org). From our perspectives as teachers and as professional
statisticians, R has a number of advantages: its open-source status; the fact
that it runs on most platforms, including Windows, Macintosh and Linux
operating systems; its power in terms of the range of statistical methods
that it offers. Most importantly from a pedagogical perspective, using R

encourages the open approach to problems that the book is intended to
promote, and discourages the ‘which test should I use on these data’ kind
of closed thinking that we very much want to avoid. Of course, R is not the
only software environment which meets these criteria, but it is very widely
used in the statistical community and does seem to be here to stay.

We have provided datasets and R scripts (sequences of R commands) that
will enable any reader to reproduce every analysis reported in the book.
This material is freely available at: www.lancs.ac.uk/staff/diggle/intro-
stats-book.

We hope that readers unfamiliar with R will either be able to adapt
these datasets and programmes for their own use, or will be stimulated to
learn more about the R environment. But we emphasize that the book can
be read and used without any knowledge of, or reference to, R whatsoever.



When you can measure what you are speaking of and express it in numbers,
you know that on which you are discoursing. But when you cannot measure
it and express it in numbers, your knowledge is of a very meagre and
unsatisfactory kind.

Lord Kelvin (Sir William Thomson)

Having numbers is one thing, having them understood and correctly inter-
preted is quite another.

T. N. Goh
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1

Introduction

1.1 Objectives

Our objectives in writing this book are:

• to provide students with a basic understanding of the role that statistics
can play in scientific research;

• to introduce students to the core ideas in experimental design, statistical
inference and statistical modelling;

• to prepare students for further reading, or for more specialized courses
appropriate to their particular areas of research.

Throughout, we emphasize the underlying concepts rather than the techni-
cal details. Knowing how to translate a scientific question into a statistical
one, and to interpret the result of a statistical analysis, are more important
than knowing how to carry out the computations involved in the analysis.
Machines can do the computations for us.

An emphasis on concepts rather than on specific techniques distin-
guishes the book from most introductory statistical texts. Readers who
need more technical detail on specific techniques have many excellent books
available to them, usually with titles like Statistics for ‘X’, where ‘X’ might
be biology, sociology, . . . Our own favourite amongst these is Altman (1991),
whose focus is on medical applications. A corollary to our focus on concepts
is that we cover several topics not normally found in introductory texts,
including the analysis of time series and spatial data, and give suggestions
for further reading in these relatively specialized areas.

1.2 Statistics as part of the scientific method

The goal of science is to understand nature. The two pillars of the scientific
method are theory and observation. A scientific theory predicts how a
natural process should behave. Observation, whether through a controlled
experiment or direct observation of the natural world, can tell us whether
the theory is correct. Or, more accurately, it can tell us whether the theory
is not correct. A scientific theory cannot be proved in the rigorous sense
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nature
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Fig. 1.1. Scientific method and statistical method.

of a mathematical theorem. But it can be falsified, meaning that we can
conceive of an experimental or observational study that would show the
theory to be false. Well-known examples from the early history of science
include the falsification of the pre-Copernican theory that the Sun rotated
around a stationary planet Earth, or that the Earth itself was flat. Similarly,
the subservience of theory to observation is important. The American
physicist Richard Feynman memorably said that ‘theory’ was just a fancy
name for a guess. If observation is inconsistent with theory then the theory,
however elegant, has to go. Nature cannot be fooled.

The inferential character of statistical method is in complete harmony
with this view of science. Contrary to popular belief, you cannot prove
anything with statistics. What you can do is measure to what extent
empirical evidence, i.e., data, is or is not consistent with any given theory.

This view of the role of statistics within scientific method is summarized
in Figure 1.1. Nature sits at the apex of the triangle; a scientific theory
provides a model of how nature should behave; a scientific experiment
generates data that show how nature actually behaves. Statistical inference
is the bridge between model and data.

Another important role for statistics that is not shown in Figure 1.1 is
to help in the design of a scientific investigation so as to make the degree
of uncertainty in the results of the investigation as small as possible.

1.3 What is in this book, and how should you use it?

Chapter 2 uses a simple undergraduate physics experiment to illustrate how
statistical ideas can be used to advantage in all stages of a scientific inves-
tigation. It explains how the key statistical concepts of design, inference
and modelling contribute to the process of scientific inquiry.
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Chapter 3 discusses the idea of uncertainty and introduces probability as
a measure of uncertainty. These concepts underpin the whole of statistics.
The less theoretically inclined reader may find some of the ideas difficult
to grasp on first reading, but if this applies to you we hope that you will
persevere, perhaps after reading the later chapters that are more strongly
rooted in scientific applications.

Chapter 4 describes some graphical and numerical techniques that can
be used for exploring a set of data without any specific scientific goal
in mind. This process, called exploratory data analysis, cannot lead to
definitive conclusions but is an essential first step in understanding the
patterns of variation in a dataset. At the very least, exploratory data
analysis can detect gross errors in the data. More subtly, it can help to
suggest suitable models that can be used to answer specific questions.
This is especially the case when the underlying scientific theory is only
incompletely understood. For example, we may know that toxic emissions
from industrial activity harm plant life, but not know the form of the dose-
response relationship.

Chapter 5 discusses the statistical approach to experimental design,
with an emphasis on the core concepts of randomization and blocking. We
focus initially on agricultural field experiments, but also describe the basic
elements of a type of medical research investigation known as a clinical
trial.

Chapter 6 introduces some simple statistical methods that feature in
most introductory courses and textbooks. Our hope is that you will see
these methods as logical consequences of the general ideas presented in
earlier chapters, rather than as arbitrary formulae plucked from the air.

Chapter 7 discusses statistical modelling. A statistical model is a way
of describing mathematically the scientific process that has generated a
set of experimental data, in a way that recognizes both predictable and
unpredictable variation in the results of the experiment. Historically, many
of the most widely used statistical methods were tailored to the analysis
of particular types of experiment. Statistical modelling puts all of these
methods, and more, into a unified framework. Because of this breadth of
scope, Chapter 7 is the longest in the book. If you wish, you can skip
Sections 7.9 and 7.10 on a first reading.

Chapters 8, 9 and 10 introduce a range of more specialized statistical
methods relating to variation in time or space. In Chapter 8 we consider
data in the form of lifetimes, whose distinctive feature is that the data
are often censored. For example, in studying the survival times of patients
being treated for a potentially fatal illness, some patients will die within
the study period, whilst others will not: their survival times are said to be
censored at the study end-time. Chapter 9 concerns data in the form of a
time series. A time series is a sequence of measurements made at equally
spaced times, for example a set of daily recorded levels of air pollution at
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a specific location. Chapter 10 concerns spatial data, for example recorded
levels of air pollution at many locations.

Each of Chapters 2 and 3 could be read as a self-contained essay.
Chapters 4 to 6 and the early parts of Chapter 7 contain the material
needed to design and analyse simple experiments. Chapters 8 to 10 can be
read in any order.

You can work through all of the material without doing any statistical
calculations yourself. You should then be better able to have an effective
dialogue with a statistician kind enough to do the hands-on analysis for
you. However, statisticians (although invariably kind) are also scarce, and
we would recommend that you learn to reproduce the analyses presented in
each chapter, either using the R code and data provided on the book’s web-
site, www.lancs.ac.uk/staff/diggle/intro-stats-book, or by using whatever
other statistical software you prefer.

We have chosen not to give exercises at the end of each chapter. In our
view, the best way to be sure that you have understood the material is
to explore different ways of analysing the datasets discussed in the book
or, even better, to try using the methods on your own data. We hope that
the material on the book’s website will help you to build your confidence
as you try different things. And we would encourage you to ask yourself
at every stage how each statistical analysis that you perform on your own
data contributes to your scientific understanding.

Even if you do all of the above, you may still find that your investigation
needs more sophisticated statistical design and/or analysis than the book
covers – it is an introduction, not a comprehensive manual. But we hope
that it will give you the knowledge and confidence that you need either
to tackle more advanced material yourself, or to engage productively with
your statistical colleagues. In our view, statisticians have at least as much
to gain from collaborating with scientists as scientists have to gain from
collaborating with statisticians.



2

Overview: investigating
Newton’s law

2.1 Newton’s laws of motion

Sir Isaac Newton (1642–1727) was one of the great scientific thinkers of
his, or any other, age. Amongst his many achievements, he discovered the
‘laws of motion’ which form the foundation of classical, or ‘Newtonian’
mechanics. Discoveries by twentieth-century physicists, amongst whom the
best known to the general public is Albert Einstein (1879–1955), reveal
Newton’s laws to be, strictly, approximations, but approximations that for
all practical purposes give excellent descriptions of the everyday behaviour
of objects moving and interacting with each other.

One of Newton’s laws predicts that an object falling towards the ground
will experience a constant acceleration, whose numerical value is often
represented by the symbol g, for ‘gravity’. It follows using the mathematical
tools of the calculus that if an object is dropped from a resting position
above the ground, the vertical distance d that it will fall in time t is given
by the formula

d =
1

2
gt2. (2.1)

Like any scientific law, (2.1) will only hold under ‘ideal conditions’. The
statistical method often comes into its own when dealing with experimental
data that, for practical reasons, have to be collected in less-than-ideal condi-
tions, leading to discrepancies between the data and the laws which purport
to generate them. Some years ago, during a short course on statistics for
physics students, we devised a simple lab experiment to illustrate this in
the context of Newton’s law (2.1). We shall use this same experiment,
and the data obtained from it, to motivate an overview of the role played
by the statistical method in scientific investigation. We acknowledge at
the outset that the experiment used deliberately crude apparatus in order
to serve its educational purpose. It would have been easy to set up the
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Fig. 2.1. Sir Isaac Newton.

experiment in such a way that the data would have obeyed (2.1) more or
less exactly – indeed, when we first asked for the apparatus to be set up
for a demonstration, the lab technician did just this, and clearly doubted
our sanity when we said that we wanted something less precise.

Incidentally, Newton was also one of two apparently independent
discoverers of the calculus, the other being the German mathematician
Gottfried Wilhelm von Leibnitz (1646–1716); see, for example, Hall (1980).
Accounts of Newton’s life and scientific achievements include Iliffe (2007)
and Gleick (2003). Figure 2.1 shows one of several well-known portraits of
Newton.

Returning to our lab experiment, the set-up is illustrated in Figure 2.2.
A steel ball-bearing is held by an electromagnet at a vertical distance d
above the bench. The value of d can be adjusted using a screw-clamp and
measured against a millimetre scale. A two-way switch is wired to the
electromagnet and to a stopwatch so that in one position the electromagnet
is on and the stopwatch is off, and in the other the electromagnet is off and
the stopwatch is on. A single run of the experiment consists of setting a
value for d, releasing the ball-bearing by throwing the switch, and recording
by a second throw of the switch the time elapsed until the ball-bearing hits
the bench.
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Fig. 2.2. Schematic representation of the apparatus for the lab experiment.

2.2 Defining the question

Most introductory statistics books focus on methods for analysing data.
In this book, we postpone our discussion of how to analyse data until
we have considered two more basic questions: why do we want to analyse
the data? and what data do we want to collect in the first place? The
why question is for the scientist to answer. The question is relevant to a
statistics book because the scientific purpose of an investigation, be it a
laboratory experiment or an observational study of a natural system, will
influence what kind of data are to be collected and therefore the statistical
tools that will be needed to analyse the resulting data. The data must be
logically capable of answering the scientific question but, as we discuss in
Section 2.3, they should also do so in as efficient a manner as possible.

In our simple lab experiment, the task we set our physics students was:
suppose that the value of the physical constant g in (2.1) were unknown;
using a fixed number of runs of the basic experiment, estimate the value
of g.
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2.3 Designing the experiment

The role of the statistical method in experimental design is, firstly to
ensure validity, secondly to maximize efficiency. By validity, we mean
that the experiment is capable of answering the question of scientific
interest; by efficiency, we mean that the answer is as precise as possible. In
simple experiments, ensuring validity is usually straightforward, ensuring
efficiency is less so. The key to both lies in understanding why experimental
results might vary between runs, i.e., in identifying all possible sources of
variation.

For our simple laboratory experiment, the most obvious source of
variation is the chosen value for the vertical distance d. Larger values
of d will clearly tend to deliver longer measured times t. We call this a
source of systematic variation, meaning that it is under the control of the
experimenter. A second source of variation is the experimenter’s reaction-
time, which is a consequence of the crude way in which the experiment
was set up so that the measured time involves the student responding to
the sound of the ball-bearing hitting the bench. Conceivably, the student
could anticipate the ball-bearing hitting the bench, but in either event
the discrepancy between the actual and the recorded time t will vary
unpredictably between repeated runs of the experiment. We call variation
of this kind random variation.

Sources of variation may also be classified as of interest or extraneous.
In our experiment, variation due to changing the value of d is of interest,
because it relates to the scientific question, whereas variation due to
reaction time is extraneous. But to a physiologist, the reverse might be true.
In other words, the distinction between systematic and random variation
is an inherent property of an experiment, whereas the distinction between
variation of interest and extraneous variation is context-dependent.

An experimental design should aim to eliminate extraneous sources
of variation whenever possible. For example, in our experiment the same
student recorded all of the measured times, thereby eliminating variation
between the average reaction times of different students. When it is not
possible to eliminate extraneous sources of variation, we use randomization
to protect the validity of the experiment. In some circumstances, the order
in which runs of the experiment are performed may affect the resulting
measurement. This could apply in our experiment if the student’s average
reaction time improved with practice. If this were the case, and the runs
were performed in order of increasing values of d, then the variation of
interest, namely how the measured time varies with d, would be mixed
up with the extraneous variation due to the practice effect. This is called
confounding, and is clearly undesirable. We eliminate it by first choosing
our values of d, then performing the runs of the experiment in a random
order.
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Table 2.1. Data from the lab experiment.

t (sec) d (cm) t (sec) d (cm) t (sec) d (cm)

0.241 10 0.358 40 0.460 70
0.249 10 0.395 45 0.485 75
0.285 15 0.435 50 0.508 80
0.291 20 0.412 50 0.516 85
0.327 25 0.451 55 0.524 90
0.329 30 0.444 60 0.545 90
0.334 30 0.461 65
0.365 35 0.481 70

Randomization is fundamental to good statistical design, but this
should not be taken as an excuse not to think of other ways in which
extraneous variation can be eliminated. Typically, randomization on its
own can ensure validity of an experiment, but does not deliver efficiency.

Table 2.1 shows the design used by one of our students and the results
obtained by them. Their results are presented in order of increasing d,
rather than in time order; note that they include some pairs of repeated
measurements at the same value of d, called replicates. Replicates allow
us to assess the random variation in the data separately from the system-
atic variation. This is especially important when we do not have a well-
established theoretical law, like (2.1), to describe the anticipated pattern
of the systematic variation in the data.

2.4 Exploring the data

Once an experiment has been conducted, its recorded results constitute
the data, which are the raw material from which we now seek to answer
the original scientific question. Data analysis is usually conducted in two
stages. The first, informal stage is called exploratory data analysis. Its role
is to describe the general pattern of variation in the data and to look
for unexpected features that might point to problems in the experiment,
unanticipated sources of variation or simple recording errors in the data.
The second, more formal phase, which we discuss in Section 2.7, provides
the answer to the original question, and is sometimes called confirmatory
data analysis.

Graphical methods feature prominently in exploratory data analysis.
For our simple experiment, the most obvious form of graphical presentation
is a plot of t against d, called a scatterplot. Figure 2.3 gives an example.
Good graphical design can materially improve the interpretability of plots
like Figure 2.3, and we shall discuss this in more detail in Chapter 4. For
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Fig. 2.3. A scatterplot of time against vertical distance for the data from the lab
experiment.

the time being, we comment only that a general statistical convention in
drawing a scatterplot is to plot the output from each run of the experiment,
here the recorded time t, on the vertical axis, and the corresponding input,
here the distance d, on the horizontal axis. At first sight, this contravenes
the mathematical convention that in a graph of a function such as (2.1) the
horizontal axis should represent the argument of the function, here t, and
the vertical axis the corresponding value of the function, here d = 1

2gt
2. We

can reconcile this by re-expressing the law as

t =
√
2d/g. (2.2)

Why does this apparently trivial re-expression matter? It matters because
the random variation in the experimental data affects t, not d. Hence, the
points in our graph (Figure 2.3) can be thought of as randomly perturbed
versions of the points on the curve prescribed by (2.2). Or can they?

2.5 Modelling the data

The word model is very widely used in science to mean a mathematical
representation of a natural system. Models are rarely exact representations
of nature, although some, like Newton’s laws, are pretty good approxima-
tions. Indeed, the best models are those that are informed by well-founded
scientific theory. Models of this kind are sometimes called mechanistic
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models, in contrast to empirical models that seek only to describe the
patterns observed in experimental data.

In the absence of Newton’s laws, we might be tempted to describe the
pattern in Figure 2.3 by a straight-line relationship between the input d and
the output t. This would allow us to quantify the rate at which t increases
with d as the slope of the best-fitting line. But closer inspection would
reveal a discrepancy between the straight-line model and the data; there
is a curvature in the relationship for which, in this experiment, Newton’s
law provides a ready explanation. However, suppose that in equation (2.2)
we redefine an input variable x =

√
d, a constant β =

√
2/g and relabel t

as y to emphasize that it is an output rather than an input. Then, (2.2)
becomes

y = βx, (2.3)

which is the equation of a straight-line relationship between the input x
and the output y, with slope β.

Equation (2.3) invites us to draw a scatterplot of y against x, which we
show here as Figure 2.4. This does indeed show a linear relationship, but
there is still a discrepancy between theory and data; equation (2.3) suggests
that the best-fitting straight line should pass through the origin, whereas
extrapolation of a line fitted by eye to the data in Figure 2.4 clearly suggests
a positive value of y when x = 0. This positive value, α say, corresponds to
the student’s average reaction time, and to accommodate this we extend
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Fig. 2.4. A scatterplot of time against the square root of vertical distance for the
data from the lab experiment.
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our model to

y = α+ βx. (2.4)

This extended model still does not ‘fit’ the data perfectly, because the data
points do not follow exactly a straight line, or indeed any other smooth
curve. Reaction time again provides the explanation. As is well known,
repeated measurements of a person’s reaction time show unpredictable,
or random variation about an average value. In (2.4), the constant α
represents the average reaction time, but there is nothing to represent the
random variation in reaction time. Hence, our final model for this simple
experiment is

y = α+ βx+ Z, (2.5)

where now Z is a random variable, a quantity which varies unpredictably
between runs of the basic experiment.

To summarize: Newton’s law tells us to expect a straight line, or linear
relationship between x and y, of the form y = βx; basic knowledge of
physiology tells us to add an average reaction time α, to give y = α+ βx;
the evidence from the data confirms that we need to add a random variable
Z, giving the final form of the model as y = α+ βx+ Z.

Now, how can we use the model to answer the question?

2.6 Notational conventions

We shall generally use letters near the end of the alphabet (x, y, . . .) to
represent variables, and letters near the beginning of the alphabet (c, g, . . .)
to represent known constants. However, we may disobey our own rules, for
example in using d as a variable. Notation is intended to be helpful, and
rules are there to be broken when there is a good reason for doing so; here,
the mnemonic value of d for ‘distance’ justifies our overriding the ‘end of
the alphabet’ convention for variable names.

Statisticians use upper-case letters to denote random variables and
lower-case letters to denote non-random variables, and we will adopt this
convention from now on. Hence, a more correct version of equation (2.5)
would be

Y = α+ βx+ Z. (2.6)

This is because x, the square root of the distance, varies non-randomly
by design, whereas Z, the variation in the experimenter’s reaction time,
varies randomly and so, as a consequence, does Y, the time recorded by the
experimenter.

The distinction between non-random and random variables leads us to
another convention, and initially a confusing one, in which we use lower-
and upper-case versions of the same letter to mean subtly different things.
In using a lower-case y in equation (2.5), we are thinking of y as one of
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the numbers in the relevant column of Table 2.1, whereas in (2.6), y has
become Y to indicate a model for a generic run of the experiment, in which
Y is a random variable because it includes the random variable Z.

We use Greek letters (α, β, . . .) to denote constants whose values are
unknown. We call unknown constants parameters, a word of Greek origin
whose literal translation is ‘beyond measurement’. Statisticians always use
‘parameter’ in this specific sense. Parameters are the embodiment of the
scientific questions posed by the data, and as such always occupy centre
stage in confirmatory statistical analysis.

2.7 Making inferences from data

Inference is the formal process by which statisticians reach conclusions
from data. The inferential paradigm is that the data are but one of infi-
nitely many hypothetical datasets that could be obtained by repeating the
experiment under identical conditions. Since such repetitions will produce
different data (different versions of Table 2.1), they will also lead to different
answers, all equally valid. But the underlying truth, the state of nature,
remains the same. For this reason, the answer that the statistical method
gives to any scientific question must be couched in terms of uncertainty.
This is the kind of thing that gets statistics a bad name, but it is in fact
its fundamental strength. The answer to any non-trivial scientific question
is uncertain. We can reduce the uncertainty by doing more and better
experiments, to the point where the uncertainty becomes negligible and we
are prepared to behave as if we have an exact answer, but until we reach
this happy state of affairs, it is better to acknowledge and quantify our
uncertainty rather than to pretend it does not exist.

More specifically, statistical inferences fall broadly under three headings:
parameter estimation; hypothesis testing; and prediction.

Parameter estimation consists of using the data to make a best guess
at the true value of any parameter in a model. Our model (2.6) has three
parameters. Two of these, α and β, describe how the average recorded time
varies according to the conditions of the experiment, i.e., the chosen value
of x. The third, which does not appear explicitly in equation (2.6), relates
to the amount of variability in the random term Z. The mathematical
interpretation of α and β is as the intercept and slope of the line describing
the relationship between x and y. Their scientific interpretation is that α
is the average reaction time, whilst β is related to the physical constant, g,
by the equation β =

√
2/g, or equivalently, g = 2/β2. Because of this exact

relationship, an estimate of β implies an estimate of g.
A point estimate is a single value. For example, fitting a straight line by

eye to Figure 2.4 would give point estimates somewhere around α̂ = 0.1 and
β̂ = 0.05. We use a circumflex, or ‘hat’ above the name of the parameter
to indicate an estimate, rather than its true, unknown value. Another
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person fitting the line by eye would get slightly different estimates, and
an objective method of estimation would be preferable. Not only does an
objective method yield a unique answer for a given dataset, it allows us to
use statistical theory to say by how much we would expect the answer to
vary over repetitions of the experiment. This leads to an interval estimate
of a parameter, a range of values which in some reasonable sense is ‘likely’
to contain the true value of the parameter in question. A widely accepted
statistical method of estimation for our model and data, which we will
discuss in detail in Chapters 3 and 7, gives interval estimates for α and
β with the property that each has a 95% chance of including the true
value of the parameter. This gives the interval estimate for α as the range
from 0.0760 to 0.1120, which we write as α̂ = (0.0760, 0.1120). In the same

notation, the interval estimate for β is β̂ = (0.0431, 0.0482). Using the
relationship that g = 2/β2, we can convert the second of these interval
estimates to an interval estimate for g that again has a 95% chance of
including the true value of g; we calculate the lower and upper limits as
2/0.04822 = 860.9 and 2/0.04312 = 1076.7, to give the interval estimate
ĝ = (860.9, 1076.7). This interval is the statistical answer to the question,
and its width is a measure of how precise is our experiment.

Parameter estimation seeks to establish what range of values might
reasonably be assigned to an unknown parameter. Hypothesis testing asks,
more specifically, whether a particular value is reasonably consistent with
the data. For example, an assertion that g = 981 cm/sec2 is a hypothesis,
and a test of this hypothesis leads either to its acceptance or rejection
according to whether the hypothesized value is or is not reasonably consis-
tent with the data. This begs the question of what we mean by ‘reasonably
consistent’. One simple answer is to accept any hypothesized value which
falls within the corresponding interval estimate. Amongst other things, this
has the desirable consequence of emphasizing that acceptance is not proof,
since infinitely many different hypothesized values are thereby accepted,
but only one can be true. It follows that formally testing a single hypothesis,
for example, g = 981 cm/sec2, only makes sense if the number 981 has
some special status that sets it apart from all other values. This might
be the case if an experiment is intended to investigate whether a scientific
theory known to hold under certain conditions does or does not continue
to hold under new, previously unexplored circumstances. In such cases,
we can consider a model in which a parameter θ should, according to
currently accepted theory, take a particular value, say zero, and test the
hypothesis that θ = 0. The formal outcome of a hypothesis test is to
accept or reject a hypothesis. It follows that the outcome may be wrong
in either of two ways: we may reject a hypothesis that is, in fact, true;
or we may accept a hypothesis that is false. A ‘good’ test is therefore
one that makes both of these unlikely. We shall continue this discussion
in Chapter 5.
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Hypothesis testing played a major role in the development of statistical
theory and methods during the first half of the twentieth century, and
continues to feature prominently in many elementary statistics books and
courses, especially those aimed at non-statistical audiences. However, in the
absence of any prior theory which gives a special status to a particular value
of the parameter in question, hypothesis testing is of doubtful scientific
value and should be avoided in favour of parameter estimation.

Both parameter estimation and hypothesis testing are concerned with
the search for scientific truth. Prediction is concerned with establishing
what behaviour might be observed as a consequence of that truth. Predic-
tion becomes a statistical exercise when the truth is known only within non-
negligible limits of uncertainty. Suppose, in our simple experiment, we wish
to predict what time might be recorded in a future run of the experiment
with d = 200. The existing data are of no direct help, because d = 200
falls outside their range. But if we believe our model (2.5), we can plug in
point estimates for α and β and simply extrapolate the resulting line to
x =

√
200 ≈ 14.14. Using the mid points of the intervals quoted earlier for α̂

and β̂, the resulting extrapolation is Ŷ = 0.0940 + 0.0457× 14.14 = 0.7521.
But since our point estimates are uncertain, so must be our prediction.
If we make due allowance for this, it turns out that a reasonable pre-
diction interval is Ŷ = (0.7097, 0.7704). We can also make a distinction
between predicting the actual value of Y we would observe in a single
run with x = 14.14 and the average value of Y over repeated runs with
x = 14.14. The point prediction is the same for both, but the prediction
interval for a future observation is wider than the interval for the average,
because of the additional uncertainty that attaches to any future value of
Z. This additional uncertainty does not apply to the prediction interval
for the average, because by definition the average value of Z is zero.
The 95% confidence interval for the average value of Y when x = 14.14
is (0.7207, 0.7594), slightly narrower than the corresponding prediction
interval Ŷ = (0.7097, 0.7704).

2.8 What have we learnt so far?

Statistical thinking can contribute to every stage of scientific inquiry: in
the design of an experiment before it is conducted; in the preliminary, or
exploratory analysis of the data that result from the experiment; in for-
mulating a model; and in drawing valid scientific conclusions, or inferences
from the experiment. In reality, the progress from one stage to another may
be far from smooth. An ideal design may be infeasible or too expensive to
use in practice; exploratory analysis may reveal unforeseen features of the
data, prompting a reassessment of the scientific objectives. A model that
seems plausible beforehand may prove to be inconsistent with the data –
in this respect, we emphasize that the most successful models are often
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those that strike a balance between, on the one hand purely empirical
models that ignore basic scientific knowledge, and on the other highly
elaborate mechanistic models that seek to describe natural processes in such
fine detail that the available data cannot hope to validate the modelling
assumptions. The middle ground has been called ‘data-based mechanistic’
modelling by Young and Beven (1994).

Fundamentally, the role of the statistical method is to deal appropriately
with unpredictable variation in experimental results. If the result of an
experiment can be reproduced exactly by routine repetition, then there is no
place for statistics in interpreting the experimental data. This is sometimes
incorrectly taken to imply that statisticians are more interested in the
‘noise’ than in the ‘signal’ associated with a set of data. A more accurate
statement would be that statisticians share scientists’ interest in the signal,
but recognize that noise may be hard to eliminate altogether, and should
be recognized in order to ensure valid scientific conclusions. We once gave
a talk in which we introduced a relatively complex statistical model to
analyse data that had previously been analysed by much simpler methods.
In the subsequent discussion we were accused of ‘muddying the water’, to
which our response was that we were simply acknowledging that the water
was, indeed, muddy.

Inference is the technical term for the process by which statisticians
analyse data in such a way that they can give an honest assessment
of the precision, or degree of uncertainty, that must be attached to the
conclusions. Often, inferences are disappointingly imprecise, but it is surely
better to recognize this than to attach false precision to what may then turn
out to be irreproducible results.
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Uncertainty: variation,
probability and inference

3.1 Variation

Whenever a scientist deliberately changes the conditions of an experi-
ment, they would not be surprised to see a consequential change in the
results, however expressed. An environmental scientist may grow plants
in controlled environments to which different amounts of pollutant have
been introduced, so as to understand the adverse effects of pollution on
plant growth; a pharmaceutical company developing a new drug may test
different doses to investigate how dose changes efficacy and/or the rate of
occurrence of undesirable side effects; an engineer may experiment with
using different components in a complex piece of equipment to discover
how different combinations of components affect the overall performance
of the equipment. This kind of variation in experimental results is called
systematic and the variables that induce it are called design variables or
factors; a common convention is to use the first term for quantitative
variables (e.g., concentration of pollutant, dose of drug) and the second
for qualitative variables (e.g., selection of components of type A, B, C,
etc.).

Even when all anticipated sources of systematic variation are held
constant, repetition of an experiment under apparently identical conditions
often leads to different results. Variation of this kind is called random, or
stochastic. The latter term is really just a fancy version of the former, but
is a helpful reminder that randomness can take many forms beyond the
everyday notion of random as a fair draw in a lottery. The formal definition
of stochastic is governed by the laws of probability (see Section 3.2 below).
Informally, we use probability as a mathematical model of uncertainty in
the following sense: stochastic variation in the result of an experiment
implies that the result cannot be predicted exactly.

In some branches of the physical sciences, the underlying scientific laws
that determine the result of an experiment are sufficiently well understood,
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Fig. 3.1. Synthetic data on blood-pressure measurements for 20 subjects, 10 of
whom are assigned drug A (solid dots), the remainder drug B (open circles).

and the experimental conditions sufficiently well controlled, that stochastic
variation is negligible. Eliminating stochastic variation is highly desirable,
but not always achievable, and certainly not in many branches of environ-
mental science, biology, medicine and engineering.

A third kind of variation arises when variables whose values are not
specified in advance are measured in the course of the experiment, even
though they are not of direct interest. The data for the following example
are synthetic, but show realistic patterns of variation. Suppose that a
clinician wishes to compare the efficacy of two different anti-hypertensive
drugs, A and B, say. They recruit 20 of their patients, all of whom are being
treated for hypertension, and give 10 of them a two-week course of drug A,
the remaining 10 a two-week course of drug B (the important question of
how to choose which 10 patients should be given drug A will be discussed
in Chapter 5). Two weeks later, the clinician measures the (systolic) blood
pressure of all 20 patients and obtains the following results:

Drug A: 177, 169, 170, 167, 176, 174, 170, 174, 176, 168
Drug B: 169, 162, 157, 164, 164, 163, 161, 171, 171, 166

These data are shown graphically in Figure 3.1. Each value in the data is
represented by a dot (solid for results from patients given drug A, open
for drug B), whose position has been ‘jittered’ horizontally to avoid over-
plotting.

Drug B appears to give the better result overall, but the measured
values of blood pressure show substantial variation between patients. Con-
sequently, the correct interpretation of the data is not clear-cut. A second
clinician remarks that in their experience, overweight people tend also to
suffer more seriously from hypertension, and suggests calculating the body
mass index (BMI) of each patient. This is easily done from medical records,
and leads to the data shown in Table 3.1.

Figure 3.2 plots the measured blood-pressure values against BMI, using
different plotting symbols to distinguish between drug A and drug B.
The diagram shows two things. Firstly, there is a relationship between
blood pressure and BMI: people with relatively high BMI do tend to
have relatively high blood pressure. Secondly, the fact that the solid dots
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Table 3.1. Synthetic data showing
measured blood pressure (BP) and
body mass index (BMI) for 20 hyper-
tensive patients, 10 of whom were
given drug A, the remainder drug B.

Drug A Drug B

BP BMI BP BMI

177 27.9 169 27.4
169 24.2 162 23.9
170 25.2 157 25.0
167 26.0 164 26.2
176 26.4 164 26.3
174 26.8 163 27.1
170 26.9 161 27.2
174 28.1 171 27.6
176 29.0 171 28.2
168 25.3 166 26.0
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Fig. 3.2. Systolic blood pressure and body mass index for 20 subjects, 10 of whom
are assigned drug A (solid dots), the remainder drug B (open circles).

and open circles occupy different parts of the diagram, with most of the
open circles lying towards the lower-right part, suggests that once the
relationship between BMI and blood pressure is taken into account, drug
B is superior to drug A. Put another way, Figure 3.2 suggests that if it
had been possible to compare the two drugs on people whose BMI was
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the same, drug B would have produced consistently lower values of blood
pressure than drug A.

In this example, the BMI variable was not of direct scientific interest,
but its inclusion in the data enabled a more incisive analysis and a conclu-
sion that drug B is more effective than drug A in treating hypertension.
Variables of this kind are called explanatory variables, or covariates. We
favour the first of these, because it aptly describes their role in explaining
what would otherwise be treated as stochastic variation. From a mathemat-
ical perspective, explanatory variables and design variables are equivalent;
both are treated as if fixed by the experimenter and the remaining variation
in the data regarded as stochastic. From a scientific perspective, the
difference between design variables and explanatory variables is that the
experimenter can control the value of a design variable, but not of an
explanatory variable. The distinction can be important. For example, one
universal principle of research involving human subjects is that subjects
must give their informed consent to take part in the study. This means that
they must understand the purpose of the study and any possible benefit
or harm (possible harm arising, for example, because of the occurrence
of adverse side effects of an otherwise beneficial drug) that they may
experience as a result of taking part in the study. This being so, suppose
that in our hypothetical example extremely obese patients decline to take
part in the study. Suppose also that drug B is indeed more effective than
drug A in controlling hypertension amongst non-obese or moderately obese
patients, but not in severely obese patients. This phenomenon is illustrated
in Figure 3.3, where different plotting symbols are used to indicate the
hypothetical results that would have been obtained from patients who in
fact declined to take part in the study; amongst these hypothetical results,
there is no clear separation between the results for drugs A and B. Analysis
of the data actually obtained would, as we have already seen, lead to the
simple conclusion that drug B is superior to drug A. Had it been ethically
acceptable for BMI to have been a design variable, the experiment could
have covered the full range of BMI, and the more complex truth would
have emerged: that drug B is only superior to drug A for non-obese or
moderately obese patients.

Although the blood-pressure example is synthetic, we will see in later
chapters that the phenomenon it illustrates is not unrealistic. Also, the
hypothetical scenario described above is itself only a simple example of a
more insidious but widespread phenomenon, selection bias. This can arise
whenever some of the intended data are missing, for reasons related to the
phenomenon under investigation. In our hypothetical example comparing
two anti-hypertensive treatments, selection bias arose because participation
in the study was voluntary and a subject’s willingness to participate was
related to their body mass index, which in turn was predictive of their
blood pressure.
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Fig. 3.3. Systolic blood pressure and body mass index for 30 subjects. Ten
subjects were assigned drug A and agreed to participate in the study (solid dots),
ten were assigned drug B and agreed to participate (open circles), five were assigned
to drug A but declined to participate (triangles), five were assigned to drug B but
declined to participate (diamonds).

3.2 Probability

Statisticians use probability theory to measure uncertainty. The intuitive
idea of probability is a very familiar one. We deal with uncertainty intu-
itively in everyday decision-making. Is it likely to rain today? If so, I should
wear a coat. Lancaster City have been drawn against Manchester United
in the FA Cup. A win for Lancaster is unlikely.

To put this idea on a more formal footing, one approach is to imagine
that something may or may not happen as a result of your doing something
that you can repeat indefinitely under identical conditions. The usual,
boring but easily understood, example is coin tossing. When I toss a coin
it will or will not land ‘heads up’. If I toss it four times, I could get 0, 1,
2, 3 or 4 heads and I would be mildly surprised if I got 0 or 4. If I toss
it 10 times and get 9 or 10 heads, I might begin to suspect that the coin
is biased in favour of heads, but 7 out of 10, or a proportion 0.7, of heads
would not be particularly surprising. However, if I toss it 1000 times and
get a proportion 0.7 of heads, I am pretty confident that the coin (or the
way I toss it) is biased. Figure 3.4 illustrates this. The proportion of heads
in a sequence of tosses of a fair coin will fluctuate around the value 0.5,
but the fluctuations will decrease in size as the number of tosses increases.

We define the probability of an event as the limiting proportion of
times that the event occurs in an indefinitely long sequence of independent
trials. This immediately begs the question of what, precisely, we mean by
‘independent’, although, as we shall see shortly, it means roughly what you
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Fig. 3.4. The cumulative proportion of heads in a simulated sequence of 1000
tosses of a fair coin.

would expect it to mean. For this and other reasons a rigorously minded
mathematician might not accept our ‘definition’ of probability, but for
practical purposes it will serve us well enough.

Now let’s get back to what we mean by ‘independence’. We define
two events as being independent if knowledge of whether one has occurred
does not alter the probability of the other occurring. For example, in our
hypothetical comparison of two anti-hypertensive drugs, the average of the
10 BP values in Table 3.1 for people given drug A is 172.1. Because the 10
values were obtained from 10 different people there is no reason to suppose
that knowing that the first person has a BP value greater than 172.1 would
be of any help to us in predicting whether the second person would also
have a BP value greater than 172.1. The 10 subjects yield 10 independent
pieces of information. Now observe that the first person’s BMI is 27.9,
which is above the average value, 26.6, of BMI for these same 10 people. Is
it coincidental that a person’s BP and BMI should both be above average
(or, by the same token, both below average)? Probably not. Overweight
people are more likely to suffer from hypertension: the two events ‘above
average BMI’ and ‘above average BP’ are not independent.

A variation on our hypothetical example is the following. Suppose that
each person provides not one but two values of BP, taken a day apart. Now
we have 20 values of BP from people given drug A. But we do not have 20
independent values. A person who gives an above-average value on day 1
is likely also to give an above-average value on day 2.
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Failure to recognize the inherent dependence between repeated mea-
surements on the same experimental unit is one of the most common
sources of fallacious statistical reasoning in the analysis of experimental
data. Conversely, ensuring independent replication is a cornerstone of good
experimental practice.

When the outcome of an experiment has only two possible values, as
with a coin toss, its statistical properties are completely described by a
single probability, say the probability of heads. If the probability of heads
is denoted by p, then the probability of a tail is necessarily 1− p, because
the outcomemust either be heads or tails, and a probability of 1 corresponds
to certainty. For example, if the coin is fair, then p = 1− p = 0.5, whereas
a coin biased in favour of heads has p > 0.5.

When the outcome has three or more possible discrete values, its statis-
tical properties are described by a set of probabilities, one for each of the
possible values, such that their sum is one. We call this set of probabilities,
pi, say, a probability distribution. Outcomes of this kind include counts and
categorical variables. An example of a count would be the number of rainy
days next week, in which case i can take values 0, 1, . . . , 7. Another would
be the number of cancer-related deaths in the UK next year; strictly this
must be a finite number, but its upper bound is hard to determine exactly.
For a variable like this, the usual strategy for describing its statistical
properties is to specify a probability distribution that allows arbitrarily
large outcomes, but with vanishingly small probabilities.

The two requirements for any probability distribution are that the
probabilities pi are non-negative and that their sum is 1. When the outcome
can take any value over a continuous range, as applies for example to blood
pressure or body mass index, we encounter a modest paradox. Suppose,
for example, that blood pressure is recorded to the nearest mmHg, as
in Table 3.1, then we might accept that the probability of the outcome
BP = 170, might be of the order of 0.05 or so (the precise value is imma-
terial for our current purpose). A superior instrument might be capable of
recording blood-pressure to an accuracy of 0.1mmHg, in which case logic
suggests that the probability of the outcome BP = 170.0 should be of the
order of 0.005. An even better instrument might . . . and so on. Apparently,
the probability of obtaining any specific outcome must be zero, yet the
probability of some outcome must be 1. One way to resolve the paradox is
to insist that there is a limit to the accuracy with which any outcome can be
measured, and it can therefore be described by a discrete set of probabilities
pi. This is rather inelegant, because it prevents a straightforward answer
to a simple question like: what is the distribution of blood-pressure values
over the UK population?

A better solution is to describe the distribution of a continuously
varying outcome by a smooth curve like the one in Figure 3.5, called a
probability density function, usually abbreviated to pdf. A pdf must take
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Fig. 3.5. A probability density function, representing an outcome that can take
any value between zero and one. The area of the shaded region gives the probability
that the outcome lies between 0.1 and 0.2.

only non-negative values, and the total area under the curve must be one.
Then, the area under the curve between any two values, a and b, say, gives
the probability that the outcome will take a value somewhere between a and
b. For example, in Figure 3.5 the area of the shaded region is the probability
that the outcome lies between 0.1 and 0.2. Notice that the value of a pdf
can be bigger than one: probabilities are given by areas, not by the values
of the pdf.

3.3 Statistical inference

In everyday language, inference and deduction are near-synonyms. In sci-
entific language, there is a crucial difference. Inference is the process of
drawing conclusions from evidence, whilst admitting the possibility that
these conclusions may not be correct. Deduction is the process of logical
argument from a premise to a necessary consequence. The term statistical
inference refers to the process by which inferences are drawn from data. One
key idea in statistical inference is that the degree of uncertainty associated
with any conclusions drawn from a set of data can be expressed formally,
and quantitatively, through the language of probability. Another, equally
important but sometimes forgotten, is that the data can be regarded as a
sample that is in some way representative of a larger population of scientific
interest.
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We will have much more to say about inference in later chapters, but
to illustrate the essential ideas, we revisit our blood-pressure example.
Specifically, consider the following ten numbers:

177, 169, 170, 167, 176, 174, 170, 174, 176, 168

Why should these numbers be of any interest to anybody? Well, they are
values of blood pressure obtained from 10 people who have been given a
drug (drug A) that claims to help control the blood pressure of hypertensive
patients. So they are certainly of interest to the 10 people themselves. But
if we believe that the results for these 10 people might be representative
of what the drug would do for hypertensive patients in general, they might
also be of interest to other patients and to their treating physicians. We
call these 10 people a sample drawn from the population of all hypertensive
patients who might be candidates for treatment with drug A.

The best way to ensure that a sample is representative is to draw it
at random. The formal definition of a random sample is as follows. First,
identify the population of interest, and label its members 1, 2, . . . , N . Then
choose your required sample size n (in our example, n = 10) and pick
n numbers at random from 1, 2, . . . , N . The members of the population
whose labels have been picked in this way constitute a random sample
from the population. This definition immediately runs into some difficulty
if you can’t explicitly label every member of the population of interest: how
exactly would you identify all potential recipients of an anti-hypertensive
drug? But the definition is still worth having, if only to encourage experi-
menters to ask themselves whether their method of acquiring their data is
such that it can reasonably be assumed to behave as if it were a random
sample.

The next idea we need to understand is that of estimation. We take
samples because we have neither the time nor the money to examine
whole populations. A numerical summary of the resulting sample, for
example its average value or the proportion of values less than 170, is
of interest if it provides a reasonable point estimate of the corresponding
summary of the population. The average value of our ten blood-pressure
values is (177 + 169 + · · ·+ 168)/10 = 172.1. How do we know if this is a
‘reasonable’ estimate of the population average? Presumably, we would like
to be confident that it is close to the population value, where what we mean
by ‘close’ depends on the context. For blood pressure, an estimate with a
likely error of up to 1 mm Hg either way would be accurate enough for any
practical purpose, whereas one with a likely error of up to 20mmHg either
way would be pretty useless. So, before deciding whether to trust our point
estimate, we need to assess its likely error, which we do by converting it
into an interval estimate. Here are another 10 hypothetical values of blood
pressure sampled from a different population:
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173, 174, 171, 173, 170, 172, 174, 170, 172, 172

These also have an average value of 172.1, but there is an obvious difference
from the previous set of 10: they show much smaller variation about the
average value. As a result, you would probably trust the estimate 172.1
more in the second case than in the first, and you would be right to do so.
Using methods that we will discuss in more detail in later chapters, we can
be 95% confident that the mean blood pressure in this second population
lies somewhere in the range (171.1, 173.1). In contrast, we can only be 58%
confident of the same claim for the first population; to be 95% confident,
we would have to widen the range to (169.5, 174.7).

Now suppose that we want to assess whether the two drugs A and
B differ in their effectiveness. Using the 20 values of blood pressure in
Table 3.1, and again using methods that we will describe in detail in
later chapters, we can be 95% confident that the difference between the
population-wide average blood pressures achieved by the two drugs lies in
the range (3.4, 11.2) in favour of drug B, i.e., drug B produces the lower
average, by somewhere between 3.4 and 11.2mmHg.

An interval estimate supplies a plausible range of values for a quantity
of scientific interest. In our blood-pressure example, the interval estimate
of the difference between the average values achieved by the two drugs
suggests, amongst other things, that drug B is superior to drug A because
the plausible range contains only positive values. There are at least two
possible reactions to this.

One reaction is to question whether 95% confidence is good enough.
What if we insist on 99% confidence? In that case, our interval estimate
would widen to (2.0, 12.6). How about 99.9% confident? Now, the interval
becomes (0.0, 14.5). So, if we accept a level of confidence up to 99.9%,
we conclude that drug B is better than drug A, whereas if we insisted on
higher levels of confidence than 99.9%, our interval estimate would include
both positive and negative values, and the comparison would have to be
declared inconclusive. We could also do the calculation the other way round,
i.e., find the level of confidence so that one end of the interval estimate is
exactly zero and report this ‘critical’ confidence level – the higher it is,
the more inclined we are to believe that drug B really is better than drug
A. Approaching the problem this way is called testing the hypothesis that
there is no difference in the ability of the two drugs to achieve lower average
blood pressure. Conventionally, if the critical confidence level is bigger than
95%, the test is said to have given a statistically significant result. Also
conventionally, and confusingly, the result of the test is reported not as the
critical confidence level, c say, but as p = 1− c/100, the so-called p-value.
So in our hypothetical example, p = 1− 99.9/100 = 0.001.

In the authors’ opinion, a more sensible reaction to the interval esti-
mate (3.4, 11.2) is to ask a doctor two questions. Would a difference
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of 11.2mmHg in average blood pressure be clinically useful? Would a
difference of 3.4mmHg in average blood pressure be clinically useful? If
the answer to both is ‘no’ then the drugs are equally good for practical
purposes. If the answer to both is ‘yes’ then drug B is superior to drug A.
One ‘yes’ and one ‘no’ means that the comparison is inconclusive, and we
need more data. This still leaves us open to the criticism that using a 95%
confidence interval is no more than a convention, but at least it focuses
on the practically relevant question of how different the drugs really are,
rather than on the somewhat academic question of whether or not they
differ by what might be an arbitrarily small amount.

3.4 The likelihood function: a principled approach
to statistical inference

Probably the most widely used way of reporting the results of a statistical
analysis is the p-value. Most statisticians would prefer to see the emphasis
placed on estimation, with results reported as confidence intervals rather
than as p-values, a view that is beginning to be reflected in the editorial
policies of some scientific journals; for an early example, see Gardner and
Altman (1986). In fact, there is a close operational link between confidence
intervals and p-values. To explain this, we need to revisit and extend the
concept of probability as described in Section 3.2.

Suppose that we wish to estimate the prevalence of a particular disease
in a particular population, using a completely reliable diagnostic test.
If ρ (the Greek letter rho) denotes the prevalence of the disease in the
population, then ρ is also the probability that a randomly selected member
of the population will test positive. Suppose now that we test 10 randomly
selected members of the population and, writing − and + for a negative
and positive result, respectively, obtain the sequence

D = +−−++−+++−

How should we estimate the prevalence? Setting aside, temporarily, the
obvious answer, namely 6/10 = 0.6 or, expressed as a percentage, 60%,
we first derive an expression for the probabilities of each of the possible
sequences D that could have been observed.

If, for the sake of argument, the prevalence is indeed 0.6, then there
is a probability 0.6 that the first test result will be positive, a prob-
ability 0.4 that the second test result will be negative and therefore a
probability 0.6× 0.4 = 0.24 that the first two test results will be positive
and negative, respectively. To understand why we have to multiply the two
probabilities, imagine splitting a long sequence of test results into successive
pairs. Then, we would expect 60% of the pairs to begin with a positive
result, and of these 60%, 40% to be followed by a negative result, i.e.,
we expect 24% of the pairs to be +−. By the same argument, we expect
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24% of the pairs to be −+, 16% to be −− and 36% to be ++. Note that
these four percentages add to 100, as they must because they cover all of
the possible outcomes. A crucial assumption in this argument is that the
results of successive tests are independent, meaning that the probability
of the second test giving a positive result is 60%, whether or not the first
test gives a positive result. That seems a reasonable assumption in our
hypothetical example, but it would not be so if, for example, the pairs of
test results were from siblings and the disease was genetic in origin.

Of course, we don’t know the true prevalence: in the terminology of
Chapter 2, ρ is a parameter. But for any hypothetical value of ρ, we can
repeat the above argument to obtain the following table of probabilities:

Outcome Probability

−− (1− ρ)× (1− ρ)
−+ (1− ρ)× ρ
+− ρ× (1− ρ)
++ ρ× ρ

Also, the argument extends in the obvious way to a sequence of more
than two test results. In particular, the probability associated with any
sequence D that contains four negatives and six positives is

P(D; ρ) = (1− ρ)4ρ6. (3.1)

The notation P(D; ρ) looks a bit cumbersome, but emphasizes that the
expression on the right-hand side is derived from a particular set of data,
D, but is also a function of a mathematical variable, ρ. The left-hand panel
of Figure 3.6 plots this function. Not coincidentally, it attains its maximum
value when ρ = 0.6. We call the function P(D; ρ) the likelihood function for ρ
given the data D, often abbreviated to the likelihood for ρ and written �(ρ).
The right-hand panel of Figure 3.6 plots the corresponding log-likelihood
function, L(ρ) = log �(ρ). The same value of ρ necessarily maximizes both
�(ρ) and L(ρ), and is called the maximum likelihood estimate of ρ, usually
written ρ̂ = 0.6 to emphasize that it is an estimate, and not the true value
of ρ.

At this point, we forgive any reader who asks: why go through all
this rigmarole to answer such a simple question? But bear with us. The
great strength of likelihood-based methods is that they can be used to give
numerical solutions to more complicated problems for which there is no
intuitively obvious way to estimate model parameters. More than this, they
also give a principled approach to constructing confidence intervals, and to
testing hypotheses. Let L(θ) denote the log-likelihood function for a single

parameter θ in a statistical model, and θ̂ the maximum likelihood estimate
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Fig. 3.6. The likelihood function (left-hand panel) and log-likelihood function
(right-hand panel) for the unknown prevalence, ρ, given a sequence of ten tests
with six positive and four negative results.

of θ. Then, for a very wide class of statistical models, including all of those
used in this book, the set of values of θ for which L(θ) > L(θ̂) − 1.92 is
an approximate 95% confidence interval for θ, and a hypothesized value
θ = θ0 is rejected at the 5% significance level (i.e., p-value less than 0.05)
if it is not inside this confidence interval, i.e., if L(θ0) < L(θ̂) − 1.92. Fig-
ure 3.7 illustrates graphically how this likelihood-based confidence interval
is calculated, using the same data and model as in Figure 3.6.

For models with two or more parameters, the log-likelihood is a mul-
tidimensional surface. This is difficult to visualize, but the same method
applies except that the number 1.92 is replaced by a larger number whose
value depends on the number of parameters in the model; for two and
three parameters, the relevant values are 3.00 and 3.91. This approach
to hypothesis testing is called likelihood ratio testing. Many widely used
statistical tests are special cases of a likelihood ratio test. Conventionally,
the likelihood ratio test statistic is defined as D = 2{L(θ̂) − L(θ0)} where
θ now denotes the complete set of parameters, θ0 is a constrained version
of θ that fixes the numerical values of m parameters, and the hypothesis
θ = θ0 is rejected if D > cm(0.05) where cm(0.05) is called the 5% critical
value, and 0.05, or 5%, is called the prescribed significance level of the
test. Similarly, the collection of parameter values for which D < cm(0.05)
is called a 95% likelihood-based confidence region for θ Table 3.2 gives
values of cm(p) for m = 1, 2, 3, 4, 5 and p = 0.05, 0.01, 0.001.
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Table 3.2. Critical values of the likelihood
ratio test statistic D for number of parame-
ters m and prescribed significance level p.

p m

1 2 3 4 5

0.05 3.84 5.99 7.81 9.49 11.07
0.01 6.63 9.21 11.34 13.28 15.09
0.001 10.83 13.82 16.27 18.47 20.52
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Fig. 3.7. The log-likelihood function for the unknown prevalence, ρ, given a
sequence of ten tests with six positive and four negative results, and construction
of the likelihood-based approximate 95% confidence interval for ρ.

This method of estimating parameters and testing hypotheses is very
general and widely used. For most realistically complex statistical models
it is impossible to obtain explicit expressions for the maximum likelihood
estimates. Instead, the estimates are found numerically by maximizing the
log-likelihood function. The maximized value of the log-likelihood, L(θ̂), is
an automatic by-product, and the numerical value of the likelihood ratio
statistic D can therefore be found by maximizing the log-likelihood with
and without the constraints imposed by the hypothesis θ = θ0. Similarly,
numerical methods may have to be used to identify the likelihood-based
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confidence region; this can be difficult when the confidence region has a
complicated shape, and/or for models with more than two parameters.

Anybody who wants to use statistical methods to analyse their data
is confronted with a plethora of seemingly unrelated techniques for calcu-
lating confidence intervals or p-values in particular situations. This makes
statistical method look a bit like cookery, with a recipe for every occasion.
But most of the better recipes are particular examples of the likelihood
method. They were developed at a time when computers were unavail-
able and explicit formulae were needed to enable hand calculation of the
required results. Now that computers are ubiquitous, and fast, restricting
the statistical recipe book to explicit formulae is unnecessary. Far better, in
the authors’ opinion, to adopt a principled approach to statistical analysis,
in which the old ‘which test can I use on my data?’ mantra is replaced by
‘how can I use statistical thinking to help me get the best possible answer
to my scientific question?’ The likelihood function plays a crucial role in
the new mantra, because it provides a principled, and almost universally
applicable, approach to inference.

3.5 Further reading

The operational definition of probability given in Section 3.2 is called the
relative frequency definition. Mathematicians favour an axiomatic defini-
tion, by which they mean that they assert a minimal set of properties
that something called probability should have, and deduce as many conse-
quences of these assertions as they can. It turns out that the minimal set
really is very minimal, essentially no more than requiring that probabilities
should be numbers between zero and one, together with a mathematical
formalization of the everyday meaning of probability, to the effect that
relaxing a target cannot make it harder to hit. I don’t know what the
probability is that, sometime in your life, you will run 1 kilometre in
less than 3 minutes, but it cannot be smaller than the probability that
you will ever run 1 kilometre in less than 2 minutes 30 seconds, because
you can achieve the former either by achieving the latter or by running
1 kilometre in a time between 2 minutes 30 seconds and 3 minutes. The
axiomatic approach to probability was developed by the Russian mathe-
matician Andrey Kolmogorov (1903–1987). Relatively easy introductions
to probability theory, albeit aimed at first-year undergraduate mathemat-
ics students rather than general science students, include Chapter 5 of
Chetwynd and Diggle (1995) or, in considerably more detail, McColl (1995).

A philosophically very different view of probability and its role in
scientific inference is the idea that probability measures a person’s degree
of belief in a proposition, for example that drug B is superior to drug A
in reducing average blood pressure. Under this view, there is no objection
to different people having different beliefs and therefore assigning different
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probabilities to the same thing. However, to convert what would otherwise
be superstition into scientific method, this view of probability theory
requires its users to respond rationally to evidence. So, to continue the
example, it is acceptable for one of us to believe strongly (say, probability
0.9) that drug A is superior to drug B and for the other of us to be more
sceptical (say, probability 0.5), before we have seen any data. But faced with
the data in Table 3.1 we would both be forced to revise our probabilities
downwards in line with the evidence in favour of drug B that the data
provide. And we would both do so by working to the same set of well-
defined mathematical rules. This mode of statistical inference is known as
Bayesian inference, in honour of the Reverend Thomas Bayes (1702–1761).
Bayes was not an advocate of Bayesian inference, which only came into
being long after his death, but he set out the fundamental mathematical
result concerning revision of a probability in the light of empirical evidence
that became the foundation on which Bayesian inference was built. Lindley
(2006) is a thought-provoking, if challenging, account of these ideas.
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Exploratory data analysis:
gene expression microarrays

4.1 Gene expression microarrays

Recent technological developments in biology have led to the generation of
enormous volumes of data. An example is the technology of gene expres-
sion microarrays. Figure 4.1 shows an example of a cDNA, or ‘red-green’
microarray, so-called because the colour of each spot on the array estimates
the ratio of expression levels for a particular gene in response to each of
two stimuli, captured by the intensity of red and green colour, respectively.
A cDNA array is a glass slide on which tiny amounts of genetic material
have been deposited by a robotic device at each of several thousand posi-
tions. More modern microarray technologies achieve greater numbers still.

In very simple terms, measuring gene expression is interesting because
individuals within a species show genetic variation in the extent to
which individual genes or groups of genes within the species’ genome are
expressed, or ‘switched on’. Until relatively recently, if a scientist wanted
to understand which genes were switched on by a particular stimulus, such
as exposure to a disease-causing organism, they needed to select individual
candidate genes for detailed study. Using microarrays, many genes can be
investigated in parallel. The name embraces a number of different technolo-
gies. The following example uses a technology developed by the Affymetrix
company, and concerns an investigation into the phenomenon of calcium
tolerance in the grass, Arabadopsis thaliana. The data were kindly provided
to us by Dr Bev Abram (Biological Sciences, Lancaster University).

Dr Abram’s experiment was of a type known as a 2× 2 factorial.
Four different sets of experimental conditions, or treatments were used,
consisting of all four combinations of two factors. The first factor was the
strain of Arabadopsis used, one bred to be calcium resistant, the other a
wild-type strain. The second factor was the calcium challenge, low or high,
to which the plants were exposed. Each of the resulting four treatments
was replicated three times, giving a total of 12 experimental units.
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Fig. 4.1. A microarray image. Each spot on the array represents a gene. The
colour of the spot codes for the ratio of expression levels of that gene in response to
two different stimuli, from bright green at one extreme to bright red at the other.
This figure is reproduced in colour in the colour plate section.

DNA was extracted from plant material taken from each experimental
unit, and processed using an Affymetrix microarray. For each of the
12 samples of plant material, the microarray technology measures the
expression levels for each of 22,810 genes. The dataset therefore consists
of 22,810× 12 = 273, 720 numbers. The aim of the experiment was to
identify for more detailed investigation a smaller number of genes that
showed a response to the calcium challenge in the calcium-resistant strain
but not in the wild-type strain.

Although we have described the data as ‘measured’ expression levels, it
would be more accurate to call them ‘estimated’ levels. Impressive though
it is, the microarray technology is subject to many sources of imprecision
in its determination of levels of genetic activity. Some of these are an
inescapable consequence of natural biological variation between different
plants, whilst others stem from technical variation in the performance of
the array technology. For this reason, microarray data are usually pre-
processed in various ways, in an attempt to remove technical artifacts,
before they are analysed statistically. The data that we use in this chapter
are of this kind. Even so, they contain both biological and technical
variation in an unknown mix, and it is this which makes their interpretation
challenging.

Table 4.1 shows the data from four randomly selected genes. Some
things are immediately obvious: Gene 3 shows much higher expression levels
than Genes 1, 2 or 4, over all four treatments and all three replicates; there
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Table 4.1. Pre-processed gene expression data for four
randomly selected genes in the Arabadopsis experiment:
1 = 253023.at, 2 = 244928.s.at, 3 = 262200.at, 4 = 250740.at.

Treatment Gene

Strain Ca challenge 1 2 3 4

Ca resistant low 5.208 6.469 12.924 7.854
6.649 6.575 15.234 10.226
7.122 7.080 18.027 9.111

high 5.031 7.714 16.699 8.308
4.755 8.429 15.186 8.688
6.053 6.998 15.709 12.249

wild type low 6.410 6.357 11.772 8.741
5.482 6.278 16.407 8.395
5.180 5.906 24.235 8.913

high 5.211 6.874 17.471 8.645
6.710 7.870 14.657 7.255
5.564 3.872 20.247 13.179

is considerable variation between the results for any one gene and/or any
one treatment. Other aspects of the data are more subtle. In particular, the
biological interest in this experiment lies in identifying genes which appear
to show differential expression levels between the different treatments. It
is difficult to assess these patterns by direct inspection of the data in
Table 4.1, and it would clearly be impossible to do so for all 22,810 genes
in the complete dataset.

Although these data can be explored using simple and familiar graphical
methods, their volume demands careful choices to be made in the way the
results are displayed. Indeed, an underlying theme throughout this chapter
is that whilst modern computer graphics facilities make it easy to produce
graphs of data, the default graphs produced by statistical software packages
are often unsatisfactory.

In this and many other examples, the immediate goals of exploratory
data analysis are: to describe the typical patterns of variation in the data;
and to highlight exceptions to the typical patterns. An indirect goal is often
to suggest what kind of statistical model would be appropriate for making
formal inferences, as was the case in our discussion of the undergraduate
physics lab experiment in Chapter 2. However, this need not always be
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the case. Sometimes, an exploratory analysis will be followed by the design
of an experiment to generate an entirely new set of data for analysis, or
by a confirmatory investigation of a non-statistical kind. In the following
sections, we shall use subsets of the complete data to illustrate different
ways of exploring a dataset. From a scientific perspective, there is of course
little or no value in analysing arbitrary subsets of the data. Our reason for
doing so here is to emphasize that different kinds of graphical presentation
are suited to exploring small or large datasets. To a lesser extent, the
same applies to tabular methods of presentation, and in particular to
the need for summarization, rather than direct inspection of the data
themselves.

4.2 Displaying single batches of data

The simplest structure for a dataset is a single batch. This consists of a set
of data, say y1, y2, . . . , yn, with no internal structure of any kind. Amongst
other things, this implies that there is no significance to the order in which
the individual values yi are labelled, nor any rational basis for dividing the
data into subgroups prior to statistical analysis. For illustration, we shall
consider the values obtained from the first of the 12 arrays in our gene
expression data. In doing so, we are deliberately ignoring any biological
information that may or may not be available to define subgroups of genes,
for example, according to their biological function.

For small batches, a primitive but useful display is the dot-plot. To
illustrate, Figure 4.2 shows a dot-plot of expression levels recorded on the
first array for a random sample of 25 genes from the 22,810 available. As
the name implies, each datum is shown as a dot, which is plotted at the
appropriate point of an axis corresponding to the measured gene expression
level.

The plot shows clearly that most genes exhibit relatively low expression
levels, with a long upper ‘tail’ composed of a few genes with very high
expression levels. Distributions of this kind are called positively skewed
distributions (negatively skewed distributions have a long lower tail), and
can be difficult to interpret because most of the variation in the data is
condensed into the clump of dots at the left-hand end of the plot. It often
helps to plot positively skewed distributions on a logarithmic scale. In the
context of the gene expression data, it is also the case that biologists prefer

0 50 100 150 200 250

expression level

Fig. 4.2. Dot-plot of measured gene expression levels for a random sample of 25
Arabadopsis genes.
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Fig. 4.3. Dot-plot of log-base-two-transformed gene expression levels, for a ran-
dom sample of 25 Arabadopsis genes.
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Fig. 4.4. Cumulative plot of log-base-two-transformed gene expression levels, for
a random sample of 25 Arabadopsis genes.

to work with logged expression values, in particular using log-base-two,
giving a scale on which each unit change corresponds to a two-fold change
in expression. Figure 4.3 shows the same data as did Figure 4.2, but now
in terms of the log-transformed data. The distribution is still positively
skewed, but less so than before. The individual values are also easier to
see.

Another way to display a small batch of data is to use a cumulative plot.
If we order the values, say y1, y2, . . . , yn, from smallest to largest, then a
cumulative plot is a plot of the cumulative proportions, i/n, against the
ordered values yi. Figure 4.4 shows a cumulative plot of the same data as
in Figure 4.3. The positively skewed shape of the distribution now shows
up as a pronounced curvature in the plot.

Most people find cumulative plots difficult to interpret on first acquain-
tance. But it is worth getting to know them better, as they can be more
effective than dot-plots in revealing distributional shape in small batches
of data.

Dot-plots become cluttered for larger samples of data. Cumulative plots
can still be used to avoid the clutter, but a non-cumulative solution is
also available. Instead of plotting individual values, we collect these into
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Fig. 4.5. Frequency polygon of log-base-two-transformed gene expression levels,
for a random sample of 500 Arabadopsis genes.

ranges, called bins and use the vertical axis of the plot to represent the
numbers in each bin. Figure 4.5 shows an example for a random sample
of 500 Arabadopsis genes, using bins of unit width; for example, the
first plotted point, at x = 1.5, y = 37, indicates that 37 of the genes had
measured log-expression levels in the range one to two units. Connecting
the dots by lines is done purely for visual effect, but explains why a
plot of this kind is sometimes called a frequency polygon. The plot very
clearly shows the positively skewed nature of the underlying distribution,
with a sharp peak of log-expression levels in the range two to three
units.

Two common variants of the frequency polygon are the bar-chart and
the histogram. Figure 4.6 shows these two plots for the same data as in
Figure 4.5. The only difference between the two is that in the bar-chart the
vertical bars are separated, whereas in the histogram they are contiguous.
This may seem a small point, but its purpose is to signal that in a bar-chart,
the plotted frequencies should correspond to strictly discrete values in the
data, whereas in a histogram the plotted frequencies correspond to data
values which in fact vary on a continuous scale but have been grouped into
bins for convenience. In other words: use a bar-chart or frequency polygon
when the data values are discrete; use a histogram when, as is the case
here, they are continuous.

Figure 4.7 shows a histogram of all 22,810 log-transformed expression
levels from the first array in Dr Abram’s experiment. Notice how, with
this very large sample size, the width of each bin has been reduced to
0.5 and the plotted distribution is very smooth. It shows a single peak in
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Fig. 4.6. Bar-chart (left-hand panel) and histogram (right-hand panel) of log-
base-two-transformed gene expression levels, for a random sample of 500 Arabadop-
sis genes.
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Fig. 4.7. Histogram of log-base-two-transformed gene expression levels, for 22,810
Arabadopsis genes.

the bin corresponding to values between 2.0 and 2.5 and, in contrast to
Figure 4.6, no secondary peaks. This illustrates how batches with as many
as several hundred data values can still show features that are a by-product
of random sampling variation rather than reflecting genuine features of the
underlying population; the secondary peak in Figure 4.6 corresponding to
log-expression levels in the range 10 to 11 is a case in point.
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Fig. 4.8. Superimposed dot-plots of log-expression levels of 25 genes, in each of
the four treatment groups: Ca-resistant strain under low Ca challenge (solid dots);
Ca-resistant strain under high Ca challenge (open circles); natural strain under low
Ca challenge (+), natural strain under high Ca challenge (×).

4.3 Comparing multiple batches of data

Multiple batches of data arise naturally when experiments are performed
to compare results under two or more different treatments. The graphical
methods described above for single batches can be adapted to multiple
batches in at least two different ways: either by arranging graphical displays
of each batch in a multi-panel plot or by superimposition on a single plot,
using plotting symbols, line styles or colours to distinguish batches.

Whichever method is preferred, it is worth thinking carefully about
the overall design of the graphical display. For multiple panels the choice
of separate or common ranges for the x and y axes of each panel, and
their layout on the page, can help or hinder interpretation. Superimposed
graphics can easily become cluttered and difficult to read. We now use
versions of Bev Abram’s microarray data to illustrate these choices, in
each case equating batches to the four different treatments.

For small samples, a set of superimposed dot-plots is a simple, and often
effective choice. Figure 4.8 shows superimposed dot-plots of the measured
log-expression levels for a sample of the same 25 genes in each of the four
treatment groups, distinguished by different plotting symbols. There are
no obvious differences amongst the four distributions.

Figure 4.9 shows the same data as a set of superimposed cumulative
plots, this time with successive points connected by line segments to
minimize clutter. The clear conclusion is that the four distributions are
almost identical. This is to be expected. Few genes are likely to be involved
in regulating the plants’ response to calcium exposure, hence the likelihood
that a random sample of 25 out of 22,810 would show differences in gene
expression is remote.

There would be no obvious advantage to replacing Figure 4.9 by a multi-
panel plot. For other forms of display, the choice is less clear-cut.

Figure 4.10 shows histograms of log-expression levels from each of the
four treatments for a much larger sample of 500 genes. The two-by-two
layout acknowledges the factorial structure of the four treatments, whilst
the use of common scalings for the x and y axes makes it easy to see the
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Fig. 4.9. Superimposed cumulative plots of log-expression levels of 25 genes, in
each of the four treatment groups: Ca-resistant strain under low Ca challenge (thin
solid lines); Ca-resistant strain under high Ca challenge (thick solid lines); natural
strain under low Ca challenge (thin dashed lines), natural strain under high Ca
challenge (thick dashed lines).
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Fig. 4.10. Histograms of log-base-two-expression levels of 500 randomly selected
Arabadopsis genes in each of four treatment groups. The two-by-two layout reflects
the two-by-two factorial structure of the four treatments.
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small differences in shape amongst the four histograms. A superposition of
these same four histograms on a single plot (not shown) is very cluttered,
making it difficult to see whether or not there are any interesting differences
amongst the four treatments.

4.4 Displaying relationships between variables

A central concern of science is to understand relationships amongst two
or more measured variables in an experiment. The simplest situation of
this kind is when each run of an experiment generates a pair of measured
values, say x and y. Replication of this experiment would result in a dataset
consisting of n pairs, say (xi, yi) : i = 1, . . . , n. For example, Table 4.2 shows
measured expression levels of two genes in the Arabadopsis experiment.

A scatterplot of data pairs (xi, yi) : i = 1, . . . , n is simply a plot of the
data with each pair of values drawn as a point in two-dimensional (x, y)-
space. Figure 4.11 shows this for the data in Table 4.2. Notice that gene A

Table 4.2. Measured gene expression levels from two genes, A and B, in
an experiment with 12 replicates.

Gene Replicate

1 2 3 4 5 6 7 8 9 10 11 12

A 12.9 15.2 18.0 16.7 15.2 15.7 11.8 16.4 24.2 17.5 14.7 20.2
B 7.9 10.2 9.1 8.3 8.7 12.2 8.7 8.4 8.9 8.7 7.3 13.2
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14
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Fig. 4.11. Scatterplot of expression levels for two Arabadopsis genes in an exper-
iment with 12 replicates.
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Fig. 4.12. Scatterplot of expression levels for two Arabadopsis genes in four exper-
iments (distinguished by different plotting symbols) with three replicates each.

shows more variability in its expression levels over the 12 replicates than
does gene B. Other than that, the plot is not very revealing – there is
perhaps a hint of a positive association between the two genes, in the sense
that when one is more highly expressed than average so is the other, and
vice versa. If this were verified in a larger experiment, it would suggest a
potentially interesting pattern of co-expression of the two genes.

The more astute reader may already have noticed that the data in Table
4.2 are simply the values, rounded to one decimal place, of the data in the
final two columns of Table 4.1. So the data do not represent 12 replicates
at all, but rather three replicates of four experiments conducted under
different conditions. A more honest plot of these data is therefore Fig-
ure 4.12 where we have used different plotting symbols to differentiate
the four different experimental conditions. Now, and with the important
caveat that no definitive conclusions can be expected from such a small
dataset, we see clear differences in the relationship between the two genes
across the four experiments: in one case (+) the expression levels of gene
A vary substantially over the three replicates whilst the expression levels
of gene B are approximately constant; in another (◦) the converse holds; in
a third (•) there is a hint of weak positive association; in the fourth (×),
the association appears stronger.

The lesson of this example is that the value of a single scatterplot
of multiple batches of data can be enhanced by using different plotting
symbols to differentiate between batches. Unsurprisingly, scatterplots are
also much more useful for datasets that are too large to permit direct
inspection of the data in tabular form. Figure 4.13 shows a different
aspect of the Arabadopsis data. Now, each point on the plot represents
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Fig. 4.13. Scatterplot of average log-based-two-transformed expression levels for
500 Arabadopsis in plants exposed to low or high levels of calcium.

the expression levels, averaged over three replicates, of a single gene under
two different experimental conditions, exposure to low and high levels of
calcium. The immediate message from the plot is that genes which are
highly expressed under one experimental treatment tend also to be highly
expressed under the other, and vice versa. Note also the high concentration
of points towards the lower-left-hand corner of the plot. Most of the 500
genes show low levels of expression under both levels of calcium exposure.
This is what we would expect, because we know that most of the genome
consists of inactive genes.

Large datasets convey potentially rich messages, but their associated
plots can become cluttered. A simple way to reduce clutter in a scatterplot
that shows a strong overall association between the two variables is to
level the plot. Instead of plotting the points (xi, yi) themselves, we plot
their difference, yi − xi against their average, (yi + xi)/2. Figure 4.14 shows
the result of levelling Figure 4.13. The overall message of the plot is as
before, but the effective magnification of the plot makes it easier to see
some of the detail. In particular, recall that the experiment was designed
to investigate whether some genes, and if so which ones, show enhanced
expression when exposed to high, rather than low, levels of calcium, since
these are likely to be the genes involved in the plant’s internal calcium
regulation system. Specifically, and remembering that expression levels are
measured on a log-base-two-transformed scale, the 11 points that lie above
the value 1 on the vertical axis of Figure 4.14 correspond to genes whose
estimated expression levels have at least doubled in response to the high
level of calcium exposure; these 11 genes are therefore candidates for further
investigation of their possible involvement in calcium regulation.
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Fig. 4.14. Levelled scatterplot of average log-base-two-transformed expression
levels for 500 Arabadopsis in plants exposed to low or high levels of calcium.

4.5 Customized plots for special data types

In the earlier sections we have described the more widely used ways of
presenting data graphically. Some kinds of data need their own methods of
graphical presentation.

4.5.1 Time series

A time series is a sequence of values y1, y2, ..., yn in which yt, the tth member
of the sequence, is the value of a measurement made at time t. The standard
form of graphical presentation for a time series is a time-plot, which is
simply a scatterplot of the points (t, yt) with successive points connected
by straight lines. Figure 4.15 gives an example in which yt is the maximum
temperature recorded at the Hazelrigg field station, near the Lancaster
University campus, on day t running from 1 September 1995 to 31 August
1996. The strong seasonal effect is clear, but the plot also shows the pattern
of short-term fluctuations in temperature around the seasonal trend; for
example, the period between days 128 to 138 (6 to 16 January 1966) was
unseasonally mild, with temperatures close to or above 10 degrees.

Figure 4.16 shows a much shorter time series plot, in this case of only
the following six values:

87 73 69 54 69 52

Note that the plotted points are not equally spaced along the time axis.
The data are from a study of the effectiveness of a drug treatment for
schizophrenia. A measure of the severity of the subject’s symptoms, PANSS
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Fig. 4.15. Time series plot of maximum daily temperatures in degrees Celsius,
at the Hazelrigg field station, near the Lancaster University campus, between 1
September 1995 and 31 August 1996.
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Fig. 4.16. PANSS measurements from a schizophrenia patient at times t= 0, 1,
2, 4, 6 and 8 weeks since recruitment.

(Positive and Negative Symptom Score), was made at times 0, 1, 2, 4, 6
and 8 weeks following the subject’s recruitment to the study.

The treatment seems to have improved this person’s symptoms. But
would we be confident in predicting an equally good result for other
schizophrenia sufferers? Clearly not: we need to replicate the study. Fig-
ure 4.17 shows the data from 50 subjects, all of whom were treated
with the same drug. Individual PANSS response profiles differ markedly
between subjects; some show improvement over the eight-week follow-up
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Fig. 4.17. PANSS measurements from 50 schizophrenia patients at times t =
0, 1, 2, 4, 6 and 8 weeks since recruitment. The thick line shows, at each follow-
up time, the average PANSS score amongst patients who have not yet dropped out
of the study.

period, others do not. The profile of average PANSS scores over time does
show a steady decrease. A preliminary conclusion might be that the novel
medication is beneficial on average, but not effective in all patients; the
reduction in the mean PANSS score over the eight weeks, from 92.5 to
73.0, would certainly be regarded as a clinically worthwhile improvement.
Note, however, some shortened series, highlighted by a solid dot at the end
of each. These identify patients who withdrew from the study before eight
weeks. The preponderance of above-average termination points suggests
that the withdrawals tended to be the less well, in which case a crude
comparison of initial and final mean PANSS scores could paint the novel
medication in an unduly rosy light.

A plot like Figure 4.17 is called a spaghetti plot; the name suggests,
often with good reason, a tangled mess. However, with a little care and
the addition of a line showing the average response at each time point, the
diagram gives us a reasonably clear picture. Data of this kind, consisting
of relatively many short time series, are called longitudinal data. Early
withdrawals are called dropouts. Drawing valid conclusions from longitu-
dinal studies with dropout requires care if, as seems to be the case in
this example, the dropout process is related to the phenomenon under
investigation. General discussions of statistical methods for the analysis of
longitudinal data include Diggle, Heagerty, Liang and Zeger (2002) and
Fitzmaurice, Laird and Ware (2004).
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Fig. 4.18. London’s Soho district in 1854 with the addresses of cholera patients
marked as black dots. The location of the Broad Street pump is at the centre of
the open circle. The locations of other pumps are marked as crosses.

4.5.2 Spatial data

Some kinds of data have an important spatial context, and are best
presented as maps. Figure 4.18 is a famous early example. It shows the
residential locations of cholera fatalities in London’s Soho district at the
time of the cholera epidemic of 1854, together with the locations of public
water pumps. The concentration of cases in the centre of the map, on
and around Broad Street, led Dr John Snow to conclude, correctly, that
contaminated water from the Broad Street pump was the cause of the
epidemic; the full story is told in Hempel (2006).

A dataset of the kind shown in Figure 4.18 is called a spatial point
pattern; the information it gives is purely locational. Data in which each
location carries with it a measurement is called a marked point pattern
if both the locations and the measurements are of scientific interest, or a
geostatistical dataset if only the measurements are of interest. Figures 4.19
and 4.20 show an example of each. The first is an example of a marked
spatial point pattern. It is a map of the locations and sizes of trees in
a portion of a mature forest in Saxony, Germany. An ecologist might be
interested in understanding why the trees are where they are, and how
their locations relative to each other affect their growth. The second is
an example of a geostatistical dataset. It is a map of lead concentrations
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Fig. 4.19. Data on the locations and sizes of 134 spruce trees in a mature stand
within a forested area of Saxony, Germany. The dimensions of the rectangular area
are 56 by 38 metres. Circle radii are proportional to tree size.

measured from samples of moss gathered at the locations indicated in the
province of Galicia, Spain. Both datasets have the same numerical format,
namely a set of triples, each defining a measured value at a geographical
location. The distinction between the two is that in Figure 4.20 the loca-
tions were chosen not by nature but by the scientists conducting the study,
whose purpose was to estimate the overall pollution surface throughout the
geographical region in question.

4.5.3 Proportions

Until now, all of our examples have considered data that are quantitative
in nature: either a discrete count, or a continuous measurement. When the
outcome of an experiment or observation is a qualitative piece of infor-
mation, the resulting data are called categorical, or sometimes unordered
categorical to emphasize their qualitative nature. A simple genetic example
would be one in which a single locus carries a gene of type A or B,
and a child therefore inherits from their parents one of three genotypes,
AA, AB or BB. The standard form of graphical presentation of such
data is as a pie chart. Figure 4.21 gives an example relating to a study
of genetic variation in isolates of the bacterium Campylobacter jejuni, a
common cause of gastroenteric infection in developed countries. C. jejuni
has identifiably different genetic profiles in different host species. Wilson
et al. (2008) compared the genetic profiles of isolates from human cases
of campylobacteriosis with those of isolates from various animal hosts,
and used these data to ascribe to each human case the most probable
species-of-origin. Figure 4.21 shows the resulting distribution over the three
most common species-of-origin, cattle, chicken and sheep, and the small
proportion ascribed to a variety of all other species-of-origin. At the time
the work was done, contaminated chicken was widely recognized as a major
source of human cases, whereas the importance of cattle and sheep as host
species was somewhat surprising.
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Fig. 4.20. Lead concentrations measured from samples of moss gathered at the 63
locations indicated in the province of Galicia, Spain. Circle radii are proportional
to lead concentration.
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Fig. 4.21. Pie chart showing the proportions of human cases of campylobacteriosis
ascribed by Wilson et al. (2008) to having originated in chicken, cattle, sheep or
other species.

Pie charts are much beloved by management consultants. Statisticians
use them sparingly, and only to describe categorical data.

4.6 Graphical design

Well-constructed graphical displays of data can convey a great deal of
information clearly and succinctly. Default graphics produced by software
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are often not well constructed. Common faults include clutter (a recurring
word throughout this chapter) caused by thoughtless choice of plotting
symbols or line styles, and unnecessary decoration that distracts from the
important information in the diagram. Colour can be effective but tends
to be overused; and graphic designers should remember that red–green is
the most common form of colour blindness. A classic work on the design
of statistical graphs is Tufte (1983). More technical discussions include
Cleveland (1984) or Wainer (1997, 2005). Modern computing environments
allow for easy animation, which has an obvious relevance to the display of
data on time-varying phenomena and can also be used to good effect in
visualizing high-dimensional data through the use of dynamic graphical
displays. Cleveland and McGill (1988) is an edited collection of ideas in
this area.

4.7 Numerical summaries

4.7.1 Summation notation

Many statistical operations on a set of data involve repeated addition of
data values, or of quantities derived from data values. Summation notation
is a very convenient and compact notation for defining these operations.
Suppose, for example, a dataset consisting of the first two rows of Table 2.1,
which we here reproduce as

i t (sec) d (cm)

1 0.241 10
2 0.358 40
3 0.460 70
4 0.249 10
5 0.395 45
6 0.485 75

Each row now contains two pieces of information, t and d, and an index
variable, i, running from 1 to 6, the number of rows in the table. Suppose
we want to calculate the sum of the six values of t. In summation notation,
this is written as

6∑

i=1

ti,

in which
∑

is the summation sign, the subscript i = 1 and superscript 6
indicate the range of the summation and ti denotes the value of t corre-
sponding to index i; hence, for example, t2 = 0.358. Summation notation is
particularly useful for defining unambiguously more complex operations on



52 EXPLORATORY DATA ANALYSIS

data. For example, the slightly cumbersome instruction ‘take the product
of each pair of values t and d, add them up and divide by the sample size’
reduces to (

∑6
i=1 tidi)/6.

4.7.2 Summarizing single and multiple batches of data

The simplest and most widely used summary of a single batch of data
is its mean, or average value. The sample mean of a batch of values
x1, x2, x3, . . . , xn is

x̄ = (x1 + x2 + x3 + · · ·+ xn)/n

or, more succinctly,

x̄ =

(
n∑

i=1

xi

)

/n. (4.1)

Using the gene expression data in Table 4.1 we obtain the mean of the
three values for Gene 1 under the low-calcium challenge to the resistant
strain as x̄ = 6.326. Similarly, for Gene 2 under the low-calcium challenge
to the wild-type strain the mean is 6.180. These two values are very close,
but looking at the two sets of results we can see a clear difference between
the two. For Gene 1, the three individual values differ from the mean by
−1.118, 0.323 and 0.796, whereas for Gene 2 they differ from the mean
by 0.177, 0.098 and −0.274. We say that the results are more variable for
Gene 1 than for Gene 2.

The average of each set of three differences is necessarily zero, but we
can obtain a measure of variability by averaging the squared differences.
This gives the sample variance, whose definition is

s2 =

{
n∑

i=1

(xi − x̄)2

}

/(n− 1). (4.2)

Note that this is not quite an average, because the divisor in (4.2) is not n,
but n− 1. This makes little difference in large samples, but gives a more
reliable answer in small samples and, incidentally, acknowledges that you
can’t measure variability using a sample of size 1. Note also that the sample
variance does not have the same physical dimensions as the original data
values; for example, the units of the sample variance of a set of distances has
dimension distance-squared. To restore the original physical dimensions, we
take a square root, to give the sample standard deviation,

SDx =

√√
√√{

n∑

i=1

(xi − x̄)2}/(n− 1) (4.3)
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Table 4.3. Sample means (upper rows of each pair) and
standard deviations (lower rows of each pair) of pre-processed
gene expression data for four randomly selected genes in the
Arabadopsis experiment: 1 = 253023.at, 2 = 244928.s.at, 3 =
262200.at, 4 = 250740.at.

Treatment Gene

Strain Ca challenge 1 2 3 4

Ca resistant low 6.326 6.708 15.395 9.064
0.997 0.326 2.555 1.187

high 5.280 7.714 15.865 9.748
0.684 0.716 0.768 2.174

wild-type low 5.691 6.180 17.471 8.683
0.641 0.241 6.299 0.264

high 5.828 6.205 17.458 9.693
0.784 2.081 2.795 3.098

The means and standard deviations for all 16 sets of three replicates in
Table 4.1 give the summary in Table 4.3.

A summary table is hardly necessary with only three replicates, but
for larger batches direct inspection of individual values becomes difficult
or impossible, whereas means and standard deviations are still readily
interpretable.

A slightly less compact, but correspondingly more informative, sum-
mary of a single batch of data is the five-number summary: (minimum, lower
quartile, median, upper quartile, maximum). This summary requires the
data values to be ordered from smallest to largest, then the minimum and
maximum are at the two extremes of the ordered sequence, the quartiles are
one-quarter and three-quarters of the way along, and the median is half way
along. The median gives an alternative to the sample mean as a measure
of average value, whilst the difference between the two quartiles, called the
inter-quartile range is an alternative to the standard deviation as a measure
of variability. The minimum and maximum are useful for checking that the
data do not include gross outliers that might arise through coding errors.
The five-number summary also conveys information about distributional
shape, as we now demonstrate through an example.

The 25 ordered values of log-base-two-transformed gene expression
levels shown in Figure 4.3 are:
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2.231 2.262 2.366 2.387 2.443 2.501 2.954 3.004 3.021 3.138
3.404 3.408 4.229 4.255 4.337 4.347 4.803 4.843 5.677 6.168
6.220 6.687 6.718 7.700 11.261

The five-number summary for these data is

2.231 2.954 4.229 5.677 11.261

The inter-quartile range is 5.677− 2.954 = 2.723. Note that the upper
quartile is further above the median than the lower quartile is below
the median, and that the maximum is further above the upper quartile
than the minimum is below the lower quartile. Both of these features
indicate a positively skewed distributional shape, as we have already seen
in Figures 4.3 and 4.4.

4.7.3 Summarizing relationships

We now revisit the data shown in Table 4.2. Figure 4.11 showed a scat-
terplot of the paired expression levels of genes A and B, from which we
concluded that ‘there is perhaps a hint of a positive association between
the two genes’. How could we express this numerically? The standard way
of doing so is by the sample correlation,

r =

∑n
i=1(xi − x̄)(yi − ȳ)/(n− 1)

SDxSDy
, (4.4)

where x and y denote the two values in each pair (here, expression levels
for genes A and B, respectively), and n is the sample size (here, n = 12).
For the data in Table 4.2 this gives r = 0.303.

Why is the sample correlation a measure of association? The numerator
on the right-hand side of equation (4.4) is an average of the product of
two quantities, each of which necessarily has an average value zero, so the
products will in general contain a mixture of positive and negative values.
If x and y are positively associated, then values of x greater than x̄ will
tend to be paired with values of y greater than ȳ, and similarly for values
less than their respective sample means. This leads to a preponderance of
positive products and hence a positive value of r. If x and y are negatively
associated, values of x greater than x̄ will tend to be paired with values
of y less than ȳ and vice versa, there will be a preponderance of negative
products, and r will be negative. Finally, the denominator on the right-
hand side of equation (4.4) serves two purposes: it makes r a dimensionless
quantity so that the correlation between two variables does not depend
on the units of measurement; and it constrains r to lie between −1 and
+1. Perfect correlation (r = ±1) is only obtained when the pairs (x, y) fall
exactly along a straight line in their scatterplot. Zero correlation indicates
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Fig. 4.22. Synthetic data showing a strong non-linear relationship between x
and y, but a sample correlation close to zero (r = −0.025).

a complete absence of linear association. The emphasis here is important.
A single number cannot capture the rich variety of possible associations
between pairs of measurements. For example, Figure 4.22 shows a synthetic
dataset for which the sample correlation is r = −0.025, yet there is a very
strong, albeit non-linear, relationship between the two variables. Describing
non-linear relationships in numerical terms requires statistical modelling of
the relationship, a topic we discuss in Chapter 7.

The other widely used measure of association is between two binary
variables. Suppose, for example, that we want to establish whether the
presence of a specific genetic variant is associated with the risk of a
particular disease. One way to do this is to obtain a sample of cases of
the disease and a second sample of people who do not have the disease,
called controls. For each person we then determine whether they do or
do not have the genetic variant. The resulting data can be presented in a
two-by-two table, an example of which is the following:

genetic variant

absent present

cases 85 15
controls 183 17

The proportions of people with the genetic variant differ between cases
and controls, 15/100 = 0.15 and 17/200 = 0.085, respectively. This suggests
a positive association between the genetic variant and the disease, which
we can express in a single number, the odds ratio,
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OR =
15/85

17/183
= 1.90.

Had the two proportions been identical, we would have obtained OR = 1.
The observed value OR = 1.90 implies a near-doubling of the risk of disease
when the genetic variant is present. Values of OR less than one indicate
negative association, which in the current example would have suggested a
lowering of risk when the genetic variant is present.
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Experimental design:
agricultural field experiments
and clinical trials

5.1 Agricultural field experiments

Rothamsted agricultural research station, located in the UK county
of Hertfordshire, has been operating since 1843 and is ‘almost cer-
tainly the oldest agricultural research station in the world’ (http://www.
rothamsted.ac.uk/). Throughout Rothamsted’s history, its scientific staff
have conducted field experiments to compare crop yields, either of different
varieties of a particular species, or of different experimental treatments
applied to the crops, for example, different combinations of soil fertilizer.
An agricultural field trial involves selecting a suitable piece of land on which
to carry out the experiment, subdividing the land into plots, allocating one
of the varieties or treatments to each plot, and subsequently measuring
the yield from each plot. In the terminology of Chapter 2, the treatment
allocation is the input variable and the yield the output variable.

Figure 5.1 shows an aerial view of part of the Rothamsted site, on
which a field trial is being conducted. The plots are rectangular in shape,
and their boundaries are clearly visible. In experiments of this kind, the
size and shape of each plot is usually constrained by practical consider-
ations, specifically the need to sow and harvest individual plots without
interference across the boundaries; sometimes, the design will include buffer
strips running between the plots themselves to minimize interference effects
such as the leaching of fertilizer across plot boundaries. From a statistical
viewpoint, two key questions are: how many plots should we use? and how
should we allocate the different experimental treatments amongst the plots?

The answer to the first of these questions necessarily involves a balance
between precision and cost. If similar experiments, or pilot studies, have
been performed previously their results should give some indication of the
likely magnitude of the random variation between yields from plots that
receive the same treatment. Otherwise, the choice will usually be dictated
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Fig. 5.1. Part of the Rothamsted research station, showing field trials in progress.
This figure is reproduced in colour in the colour plate section.

by the available resources. Sometimes, so-called ‘power calculations’ are
made to determine how many plots are needed to achieve the experiment’s
stated objectives. We will discuss power calculations later in this chapter,
in Section 5.6.

Careless allocation of treatments to plots can easily result in a worthless
experiment. For example, most agricultural land is, to a greater or lesser
extent, heterogeneous in character because of spatial variation in the local
micro-environment, including soil fertility, aspect, slope and any other envi-
ronmental factors that might influence crop yield. This is well illustrated by
Figure 5.2, which shows results obtained in a special type of experiment,
called a uniformity trial. In this experiment, 500 rectangular plots were
arranged in a 20 row by 25 column array. Each plot received exactly the
same treatment, hence the results show how much variation in yield might
typically result from variation in the micro-environment. This experiment
was a uniformity trial of wheat and was carried out at Rothamsted early in
the twentieth century; for details, see Mercer and Hall (1911). The resulting
plot yields show a very clear spatial trend so that, for example, had this
been a comparative trial of different varieties of wheat, any variety planted
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Fig. 5.2. Image-plot of wheat yields in a uniformity trial. The colour coding runs
from black (low) through grey to white (high).

predominantly towards the left-hand side of the field would have been at
an unfair advantage.

At the time of the Mercer and Hall experiment, statistical science was in
its infancy and systematic methods for designing and analysing field trials
to best advantage were unknown. The statistician R. A. Fisher (1890–1962)
was employed at Rothamsted between 1919 and 1933. During this period
he revolutionized the theory and practice of statistics, especially as it
applies to agricultural experimentation (especially, but not exclusively—
Fisher is revered not only as a great statistician but also as one of the great
geneticists of the twentieth century). Figure 5.3 shows Fisher working on
the mechanical calculator which was the only computing machine available
to him. Box (1978) is an excellent scientific biography of Fisher.

Two of Fisher’s fundamental contributions to experimental design were
the ideas of randomization and blocking, which we now discuss in turn.

5.2 Randomization

Figure 5.2 suggests strongly that the allocation of treatments to plots can
materially affect the results of an experiment. Suppose, for example, that
the Mercer and Hall experiment had not been a uniformity trial, but a com-
parative trial of two varieties of wheat, with one variety planted on the left-
hand half of the field (columns 1 to 12 and half of column 13), the other on
the right-hand side. Figure 5.4 shows the distributions of yields from the two
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Fig. 5.3. R. A. Fisher at work.
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Fig. 5.4. Distributions of wheat yields from the Mercer and Hall uniformity trial.
Yields from the left-hand side of the field are shown to the left of the y-axis, yields
from the right-hand side of the field to the right of the y-axis.

fictitious varieties of wheat, and gives a visual impression that variety 1
tends to produce higher yields, on average, than variety 2; the two sample
means are 4.116 and 3.768. But how can we be confident that this represents
something more than random variation between identically treated plots?
To answer this question we introduce the idea of a standard error.

In equation (4.3) we defined the standard deviation, SD, as a measure
of the variability in a single batch of data. The more variable the data, the
more imprecise must be our estimate of the mean of the population from
which the data were drawn. But however large or small the variability
in the population, we can obtain a more precise estimate by increasing
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the sample size, n. The mathematically correct way to combine these two
considerations into a measure of the precision of a sample mean is the
standard error, SE = SD/

√
n.

In this example, the two sample means and standard errors are 4.116
and 0.028 for variety 1, compared with 3.7681 and 0.026 for variety 2.
A superficial analysis would suggest that variety 1 is superior to variety 2.
But we know this to be false, because in reality there was only one variety.

Fisher’s solution to this problem was to recommend that the allocation
of treatments to plots should always be made at random. We illustrate
this for the Mercer and Hall data by randomly selecting 250 of the 500
plots to receive the fictitious variety 1, and the remainder to receive the
equally fictitious variety 2. Figure 5.5 shows the resulting distributions of
yields from the two varieties; means and standard errors for the yields were
3.926 and 0.027 for variety 1, compared with 3.971 and 0.031 for variety
2. A reasonable, and now correct, conclusion is that there is no difference
between the two varieties.

An obvious virtue of randomization is that it eliminates any possibility
of subjective bias in the allocation of treatments amongst plots. Fisher
argued more strongly than this, to the effect that randomization provides
a basis for carrying out a formal test of the hypothesis that any apparent
difference amongst the treatments can be explained entirely by chance,
i.e., that the treatments themselves have no effect on yield. We again use
the Mercer and Hall data to illustrate this idea. Note firstly that in our
previous illustration we observed that variety 1 gave an average yield of
3.926, smaller than the average yield of 3.971 for variety 2. The difference
between the two averages is 0.045 in favour of variety 2. In the previous
paragraph, we suggested that this was consistent with what we know to
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Fig. 5.5. Distributions of wheat yields from the Mercer and Hall uniformity trial.
Yields from a random sample of 250 of the 500 plots are shown to the left of the
y-axis, yields from the remaining 250 plots to the right of the y-axis.
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be true, namely that the two varieties are in fact identical, but we gave
no formal justification for this suggestion. Suppose that we now randomly
permute the 500 observed yields over the 500 plots and recalculate the
difference between the average yields for the two varieties. If the varieties
are identical, the original randomization of varieties amongst plots and
the random permutation of observed yields amongst plots are equivalent
processes. Furthermore, we can repeat the random permutation as often as
we like, and so build up a picture of how variable the difference between the
two average yields might be under the hypothesis that the two varieties are
identical. The left-hand panel of Figure 5.6 shows the result after 999 ran-
dom permutations. The histogram gives the distribution of the differences
between the two average yields over the 999 random permutations, whilst
the solid dot shows the original difference of 0.045. By way of contrast, the
right-hand panel repeats this exercise, but after first adding 0.1 to the yield
of each plot that received variety 2 in the original allocation. The two panels
tell very different stories. In the left-hand panel, the solid dot is a perfectly
reasonable value from the distribution represented by the histogram, whilst
in the right-hand panel it is not. This is as it should be, since we know that
in the right-hand panel there is indeed a genuine difference of 0.1 between
the average yields of the two varieties. In Chapter 6 we will show how
this idea can be set within the formal framework of statistical hypothesis
testing.
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Fig. 5.6. Illustration of a completely randomized design based on the Mercer
and Hall uniformity trial data. In the left-hand panel, the 500 wheat yields were
randomly split into two sets of 250, and each set assigned to one of two (fictitious)
varieties. The solid dot shows the value of the difference between the average yields
for the two sets of 250 values, whilst the histogram shows the distribution of the
difference between the two average yields when the random split into two sets is
repeated 999 times. In the right-hand panel, the same procedure was followed,
except that 0.1 was added to each of the 250 yields originally assigned to variety 2.
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Fisher did not have a computer available to him, and would have had
to construct each random permutation by physically drawing 250 tickets at
random from a set of 500. Instead, he used his mathematical skill to work
out the theoretical form of the statistical distribution induced by random
permutation.

A design of this kind is called a completely randomized design.

5.3 Blocking

The primary purpose of randomization is to ensure honesty on the part of
the experimenter. Randomization enables valid inferences to be made from
the results of the experiment, but does not guarantee that the experiment
has been designed as efficiently as possible. What do we mean by this?
Again taking the Mercer and Hall data as an illustration, suppose now
that the experiment involved a comparison between 20 different wheat
varieties, with the aim of comparing their average yields. Once again, a
random allocation of varieties amongst the 500 plots will allow an honest
comparison. Table 5.1 shows a selection of observed average differences
between pairs of varieties along with the corresponding standard errors. In
this illustration, we have created some genuine differences amongst the
varieties by adding different constants to the yields according to their

Table 5.1. Pairwise comparisons between selected
treatments (varieties) in a simulation of a completely
randomized experiment based on the Mercer and Hall
data, with 20 treatments and 25 plots allocated at ran-
dom to each treatment. The three columns in each row
give the labels of the two treatments being compared, the
difference between the average of 25 observed yields, and
the standard error of this difference.

Comparison Mean difference Standard error

1 vs. 2 1.917 0.111
1 vs. 3 0.024 0.115
1 vs. 4 2.859 0.125
1 vs. 5 −0.130 0.109
2 vs. 3 −1.893 0.125
2 vs. 4 0.942 0.134
2 vs. 5 −2.046 0.119
3 vs. 4 2.836 0.137
3 vs. 5 −0.153 0.122
4 vs. 5 −2.989 0.132
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treatment allocations. The sizes of the observed average differences in
relation to their standard errors now allows us to assess, after the event, the
likely magnitude of these differences. A conventional way to summarize the
true difference in average yields between any two varieties is as the observed
mean difference plus and minus two standard errors. For varieties 1 and 2
this gives the range (1.695, 2.139). Why this is a reasonable convention
will be explained in Chapter 6. Note also that the average of the standard
errors is 0.123, which we can take as a summary measure of the experiment’s
precision.

The observed variation in yields within any one variety has at least two
components: environmental variation amongst the 500 plots; and genetic
variation in seed quality. We can do nothing about the second of these,
but we can reduce the first by insisting that comparisons between different
varieties are made amongst environmentally similar subsets of plots. In
general, to identify such subsets we would need to know more about the
field in question. However, a good general rule, sometimes called the first
law of geography, is that spatially adjacent plots are more likely to be
similar than spatially remote plots. To exploit this, we now design the
experiment somewhat differently. Each of the 25 columns of the rectangular
array consists of 20 plots. Rather than randomly allocate 25 of the 500
plots to receive each of the 20 treatments, we randomly allocate each
treatment to exactly one plot in each column. Now, to compare two
treatments we calculate the observed difference in the two yields within each
column, and average the result. Table 5.2 shows a selection of the resulting
comparisons, in the same format as Table 5.1. The average differences
between pairs of treatments are similar in both tables, but in most cases
the associated standard error is smaller in Table 5.2 than in Table 5.1, and
the average of the standards errors has decreased from 0.123 to 0.099.
The explanation for this is that by comparing treatments within each
column, we have eliminated some of the environmental variation from the
treatment comparisons of interest and so obtained a more precise set of
results.

Fisher coined the term block to mean a subset of plots which, a priori,
would be expected to be relatively similar in character. The experimental
design that we have just illustrated is called a complete randomized block
design with 20 treatments in 25 blocks, where ‘complete’ refers to the fact
that every treatment appears in every block. In many experimental settings,
we cannot guarantee that the number of plots per block is equal to the
number of treatments, and this gives rise to various incomplete randomized
block designs.

The effectiveness of blocking as a strategy to increase the precision
of an experiment depends on the amount of environmental heterogeneity
amongst the plots and on the experimenter’s ability to identify in advance
relatively homogeneous subsets of plots to define the blocks.
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Table 5.2. Pairwise comparisons between selected
treatments in a simulation of a complete randomized
block experiment based on the Mercer and Hall data,
with 20 treatments in 25 blocks. The three columns in
each row give the labels of the two treatments being
compared, the average of the 25 pairwise differences
in observed yields, and the standard error of this
difference.

Comparison Mean difference Standard error

1 vs. 2 1.771 0.113
1 vs. 3 −0.077 0.100
1 vs. 4 2.930 0.098
1 vs. 5 −0.076 0.080
2 vs. 3 −1.848 0.101
2 vs. 4 1.159 0.110
2 vs. 5 −1.846 0.102
3 vs. 4 3.007 0.112
3 vs. 5 0.001 0.107
4 vs. 5 −3.006 0.064

5.4 Factorial experiments

A factorial experiment is one in which the treatments under investigation
have an internal structure. For example, in the Arabadopsis experiment
described in Section 4.1 the four treatments were made up of all combi-
nations of strain (calcium resistant or wild-type) and calcium challenge
(low or high). Strain and calcium challenge are factors, each of which takes
one of two levels. This defines a 2× 2 factorial treatment structure. The
definition extends in a natural way to factorial structures with more than
two factors at more than two levels. Thus, for example, the data in Table
4.1 can now be seen as three replicates of a 2× 2× 4 factorial whose factors
are strain, calcium challenge and gene, respectively.

Factorial experiments enable the investigation of interactions between
factors. In the Arabadopsis experiment, two factors are said to interact if
the effect of changing the level of one factor depends on the level of the
other factor. Table 5.3 shows the sample means of log-base-two transformed
expression level observed for Gene 2 in each of the four treatments, together
with row and column means whose interpretation we now discuss.

The difference between mean log-transformed gene expression levels in
the wild-type and Ca-resistant strains, averaged over the two levels of
calcium challenge, is 2.844− 2.598 = 0.246, with the Ca-resistant strain
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Table 5.3. Observed means of log-base-
two-transformed expression levels for Gene 2
in Table 4.1.

Ca challenge

Strain Low High Mean

Ca resistant 2.745 2.943 2.844
wild type 2.627 2.570 2.598
mean 2.686 2.756 2.721

giving the higher value. This is the estimated main effect of the strain
factor. Similarly, the estimated main effect of the calcium challenge factor
is 2.756− 2.686 = 0.070, with the high calcium challenge giving the higher
value. We can calculate the interaction between the two factors in two
equivalent ways. The first is to estimate the effect of strain at the high
level of calcium challenge, 2.943− 2.570 = 0.373, and at the low level of
calcium challenge, 2.745− 2.627 = 0.118. Then, the estimated interaction
is the difference between the two, 0.373− 0.118 = 0.255. Interchanging the
roles of the two factors in this calculation would give the same answer.
Note that the ordering of the two levels of each factor is arbitrary, but in
calculating the interaction effect the same ordering must be used for both
parts of the calculation. Fortunately, statistical software handles this kind
of thing for us automatically.

The concept of interaction is related to whether the effects of the two
factors concerned are additive, i.e., the effect of changing from the first
to the second level of both factors is the sum of the separate effects of
changing from the first to the second level of each factor separately. The
data from the Arabadopsis experiment are being analysed after a log-base-
two transformation of each measured gene expression level, meaning that
an additive effect is equivalent to amultiplicative effect on the original scale.
If we repeat the previous calculation on untransformed expression levels,
the estimated interaction becomes 0.981. Whether either of these figures
represents a genuine effect rather than random sampling fluctuation in the
data is a question we postpone until Chapter 7. The point to note here is
that the meaning of an interaction between two factors changes with the
scale on which the data are measured.

When there is no interaction between a pair of factors, a factorial
design is more efficient than a pair of single-factor experiments. Suppose,
for example, that the 12 arrays in the Arabadopsis experiment had been
assigned to treatments as follows: four to the Ca-resistant strain under the
low Ca challenge; four to the wild-type strain under the low Ca challenge;
four to the Ca-resistant strain under the high Ca challenge. Then, a
comparison between arrays 1 to 4 and 5 to 8 estimates the strain effect and
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a comparison between arrays 1 to 4 and 9 to 12 estimates the Ca-challenge
effect, i.e., in each case 8 arrays contribute to the estimate of each effect.
If, instead, we allocated three arrays to each of the four treatments as was
in fact done, then a comparison between arrays 1 to 3 and 4 to 6 estimates
the Ca-challenge effect, but so does a comparison between arrays 7 to 9 and
10 to 12, i.e., all 12 arrays contribute to the estimation of the Ca-challenge
effect and, by the same argument, to the estimation of the strain effect. The
result is to increase the precision of each estimate by a factor

√
12/8 = 1.22.

5.5 Clinical trials

In the medical and health sciences, experiments to compare the effectiveness
of two or more treatments are called clinical trials. Although this terminol-
ogy is specific to medical settings, the principles used to design clinical trials
are exactly the same as those described above in the context of agricultural
field trials, but with the added complication that ethical considerations are
also paramount when conducting experiments on people, rather than on
fields of wheat.

Fisher’s original work on the design and analysis of agricultural experi-
ments emphasized the importance of randomization as a means of ensuring
the validity of inferences concerning differences amongst the treatments
being compared. The pioneer advocate of randomization in the context
of medical research was Sir Austin Bradford Hill (1897–1991). His work
emphasized the importance of randomization as a way of protecting against
conscious or unconscious bias in the allocation of patients to treatments.

One of the key ethical considerations in a clinical trial is that a physician
cannot agree to treat a patient using an intervention that they know, or
strongly believe, to be inferior to the best available option. The first exam-
ple of a modern clinical trial was an investigation into the effectiveness of
streptomycin, an early antibiotic, in the treatment of tuberculosis (Medical
Research Council, 1948). At the time, streptomycin was in short supply,
and this provided an ethical argument in favour of randomization. As there
were good grounds for thinking that streptomycin would be effective, its
scarceness reversed the ethical argument to one in favour of randomization:
if not all patients could receive an intervention that was highly likely to
prove beneficial, the only ethically acceptable way to determine who would
be treated was to draw lots.

The present-day resolution of these ethical issues relies on the concept
of equipoise and on the practice of blinding. Equipoise requires that a trial
is only carried out when there is genuine doubt as to which, if any, of
the interventions being compared are superior to others included in the
trial. Blinding requires that neither the patient nor their treating physician
know to which intervention the patient has been randomized. An immediate
corollary is that all patients in a trial must give their informed consent to
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take part, implying amongst other things, their acceptance that they cannot
choose a particular intervention.

A fascinating set of reflections on the early history of clinical trials, and
in particular the role of randomization, can be found in Armitage et al.
(2003). Clinical trials methodology is now an academic discipline in its own
right, covering a wide range of statistical and non-statistical considerations.
A detailed account is given by Piantadosi (2005).

5.6 Statistical significance and statistical power

In Section 2.7 we described briefly three kinds of statistical inference,
namely parameter estimation, hypothesis testing and prediction. There is
increasing recognition amongst statisticians that hypothesis testing tends
to be overused, and parameter estimation underused, in many areas of sci-
entific work. However, it continues to play a key role in the analysis of data
from clinical trials. This is because a clinical trial is typically conducted to
obtain an unequivocal answer to a specific question, for example to make
a decision whether or not to licence a novel drug compound for medical
use, rather than to contribute to the general understanding of a possibly
complex scientific process. We shall therefore use the context of a simple
comparative trial to discuss the formal framework of hypothesis testing.

Suppose that we wish to compare a novel treatment for a particular
medical condition with the currently recommended standard treatment.
The null hypothesis to be tested is that there is no difference in efficacy
between the two treatments. The alternative hypothesis is that the novel
treatment is superior. The standard protocol for a clinical trial to answer
this question is the following (admitting some simplification): define the
population of eligible patients (for example, all people diagnosed with
the medical condition, say chronic hypertension); decide how to measure
the efficacy of treatment, called the primary outcome (for example, average
systolic blood pressure measured daily for seven days, two weeks after
beginning administration of either the standard or novel treatment); recruit
a sample of patients from the eligible population; randomly allocate either
the standard or the novel treatment to each patient; determine the value
of the primary outcome for each patient; analyse the data on the primary
outcome and decide whether there is or is not convincing evidence to justify
rejection of the null hypothesis in favour of the alternative hypothesis.

For our hypothetical example, assume that n patients have been allo-
cated to each of the two treatments, and let X̄ and Ȳ denote the sample
mean of the primary outcome for patients allocated to the standard and
novel treatments, respectively. It would seem reasonable to reject the null
hypothesis if T = Ȳ − X̄ is sufficiently large, i.e., T > c for some constant c.
The value of c that we choose will determine the probability that we
will reject the null hypothesis, H0, when it is in fact true. Write this as
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α = P(T > c|H0), to be read as ‘the probability that T will be greater
than c given that the null hypothesis is true’. Since this represents a
mistake, we would like this probability to be small, which we can easily
do by making c very large. But this would be unhelpful, because it would
imply that we would be unlikely to reject H0 even when H0 is false. For
example, choosing c = 25mmHg would risk missing a potentially valuable
clinical improvement in blood pressure from using the novel rather than
the standard treatment. The conventional way round this dilemma is to
choose c such that the probability of rejecting a true null hypothesis
is controlled at a pre-specified value, for example, α = 0.05, called the
prescribed significance level of the test and usually expressed as a percentage
rather than a probability. In order to control the behaviour of the test in
this way, the value of c will depend on the number of patients recruited to
the trial, which we indicate by writing it as cn.

Now recall that the result of a hypothesis test can be wrong in either
of two ways. By prescribing the significance level we have controlled the
probability of making one kind of mistake, namely rejecting a true null
hypothesis, but this says nothing about the probability of rejecting a false
null hypothesis. Write this second probability as β. If the novel treatment
is materially better than the standard treatment, we would like β to be as
close to 1 as possible. The difference between the population mean values of
the primary outcome under the novel and standard treatments is called the
clinically significant difference, or in statistical terminology, the alternative
hypothesis, whilst the corresponding value of β is called the power of the
test. Writing H1 for the alternative hypothesis, we arrive at the scenario
summarized by the following table of probabilities:

Decision True state of nature

H0 H1

accept H0 1− α 1− β

reject H0 α β

Now, for prescribed values of α and the clinically significant difference,
H1, the value of β will depend on the sample size, n. This is intuitively
reasonable: the more data you have, the more clearly you should be able
to see whether or not the novel treatment is better than the standard
treatment. However, there are two reasons for not driving β arbitrarily close
to one by increasing the sample size indefinitely. The obvious one is that the
larger the sample size the greater the cost. The more subtle one is that if it
becomes reasonably clear that the novel treatment is materially better than
the standard treatment, it is then unethical to continue to allocate patients



70 EXPERIMENTAL DESIGN

to an inferior treatment. Just as 5% has become the accepted standard for
statistical significance, so 80% has become the accepted, if somewhat less
entrenched, standard of power to detect a clinically significant difference.
The term power calculation or, more accurately, sample size calculation,
is used to denote the calculation of the sample size necessary to achieve
both the prescribed significance level and the required power to detect the
clinically significant difference.

In our experience of designing clinical trials, it is often unclear exactly
what threshold should be used to define clinical significance, there is
imperfect knowledge of the amount by which the primary outcome will vary
between identically treated patients, and there are practical constraints on
the number of patients who can be recruited. For this reason, we always
carry out power calculations under a range of scenarios, which we then
discuss with our clinical collaborators. And we always ask whether a power
calculation is really what is needed, as opposed to a calculation of how
precisely we can estimate the size of the difference in efficacy between the
treatments concerned.

5.7 Observational studies

In some branches of science, designed experiments are the exception rather
than the rule. Instead, the prevailing paradigm is to observe nature in its
natural state. Investigations of this kind are called observational studies. In
general, these tend to be subject to more sources of extraneous variation
than do designed experiments and this has two consequences. Firstly, they
tend to yield less precise results. Secondly, it is difficult to specify all the
details of the analysis protocol in advance of the investigation; the approach
to data analysis often needs to be more flexible, using the ideas of statistical
modelling that feature in Chapter 7.
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Simple comparative experiments:
comparing drug treatments
for chronic asthmatics

6.1 Drug treatments for asthma

Asthma is a chronic condition whose characteristic symptom is an abnormal
degree of wheezing or breathlessness. Typically, any one patient’s severity
of symptoms ebbs and flows over time, this being in part a response to
changes in ambient air quality related to weather conditions or exposure
to air-borne allergens such as pollen.

Anti-congestant drugs are intended to relieve the acute symptoms of
asthma. Typically, an asthmatic patient will self-administer their drug by
inhaling from a small vaporizing device that releases a metered dose, either
as an emergency response to an acute attack or as part of a regular schedule;
for example, before going to bed each night. The effectiveness of the drug
can be assessed by measuring the maximum rate at which the patient is
able to exhale, denoted by PEF (Peak Expiratory Flow), a fixed time after
administration of the drug.

A clinical trial to compare two anti-congestant drugs, Formoterol and
Salbutamol was conducted some years ago, and reported by Graff-Lonnevig
and Browaldh (1990). The results from the trial are shown in Table 6.1.

In the remainder of this chapter, we will discuss a number of ways
in which the trial might have been designed (including the one that was
actually used), and in each case how the data would have been analysed.

6.2 Comparing two treatments: parallel group
and paired designs

The asthma trial described above is an example of a simple comparative
experiment, whose defining features are the following. Each replicate of
the experiment generates a single measure, called a response. Replicates
can be performed under each of several qualitatively different experimental
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Table 6.1. Values of PEF recorded in a
clinical trial to compare the effectiveness of
two anti-congestant drug treatments, For-
moterol (F) and Salbutamol (S), in the relief
of acute asthmatic symptoms (data kindly
provided by Professor Stephen Senn).

Drug F Drug S

310 270
310 260
370 300
410 390
250 210
380 350
330 365
385 370
400 310
410 380
320 290
340 260
220 90

conditions which collectively define a single design variable, or treatment.
The objective of the experiment is to compare the mean responses under
the different treatments.

In this section, we further simplify to the case of two treatments; in
the asthma study, these correspond to the two drugs, Formoterol and
Salbutamol.

6.2.1 The parallel group design

The most straightforward design for a simple comparative study of two
treatments is the parallel group design. In this design, if a total of n
experimental units are available, we choose m of these completely at
random to receive treatment A, say, and the remaining n−m then receive
treatment B. Except in special circumstance, for example if there are big
differences between the costs of applying the two treatments, the most
efficient choice for fixed n is to take m = n/2, i.e., equal numbers of units
allocated to the two treatments.

The parallel group design is appropriate when we have no reason a
priori to distinguish between different experimental units. The design is
very widely used in clinical trials where the unit is the patient; patients
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are recruited one at a time and ethical considerations require that every
patient is afforded equal access to each of the treatments on offer.

Setting ethical considerations aside for the moment, one consequence of
using a parallel group design is that all of the inherent variation between
patients contributes to the uncertainty in the results obtained; by design,
variation between patients is treated as random variation, and if this
variation is relatively large, so will be the standard error attached to the
estimated difference between the mean response under the two treatments.

6.2.2 The paired design

The paired design is appropriate when there is a natural way of arranging
the experimental units into pairs so that we might expect results from the
two units within a pair to be more similar than those from two units in
different pairs. Pairing is a special case of blocking, in which the block size
is two. In the context of the asthma trial, an extreme form of pairing is
available, because asthma is a chronic condition and the treatments being
compared are intended only to give short-term relief from symptoms, rather
than to effect a long-term cure, i.e., each child in the study can be given
both treatments, one after the other, with a sufficient gap between the two
that no residual effect of the first drug remains when the second drug is
administered. Randomization still has a role to play in the design because
the severity of a patient’s asthmatic symptoms varies according to various
external factors, including air quality and weather conditions. Hence, the
order in which each patient receives the two drugs can be chosen at random,
e.g., by the flip of a fair coin. The advantage of the pairing is that differences
between the two drugs are no longer compounded by differences between
children. How much of an advantage this is depends on the context.

6.3 Analysing data from a simple comparative trial

6.3.1 Paired design

Although the paired design is conceptually more sophisticated than the
parallel group design, its analysis is easier. So we shall consider it first.

Suppose (as was in fact the case) that the two PEF measurements in
each column of Table 6.1 were from the same patient, i.e., the design was
a paired design. The first step in the analysis of the data is, as always, to
display the results graphically to check for any unusual features: perhaps an
unnecessary precaution for such a small dataset where it is easy to eyeball
the data, but a wise one otherwise. Figure 6.1 shows the values of F and
S as a scatterplot, exploiting their pairing. This confirms that the paired
values of F and S are positively correlated and thereby demonstrates the
value of the paired design: the concentration of the plotted points along
the diagonal implies that the differences between paired values of F and
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Fig. 6.1. Scatterplot of PEF values recorded on each of 13 asthmatic children
when treated with Formoterol (F) or Salbutamol (S).

S are less variable than either F or S individually. The plot also shows
that the extreme values F = 220 and S = 90 are, from a purely statistical
perspective, not grossly inconsistent with the general pattern of variation
and may therefore indicate that one of the patients is a particularly severe
case. Had this patient given an extreme value for one of the drugs and a
typical value for the other, we might have questioned the accuracy of the
extreme value.

Having accepted the data as they are, the next step is to calculate the
differences, d = F − S say, between the two results for each patent. This
gives:

40 50 70 20 40 30 − 35 15 90 30 30 80 130

The next step is to calculate the average value of d, namely

d̄ = 45.4,

which would seem to suggest that F is the more effective drug. But to be
reasonably confident that this is not a chance finding, we need to assess the
variability in the data, and hence the precision of d̄ as an estimate of how
much more effective on average F might be than S if prescribed routinely.

The next step is therefore to calculate the standard error of our esti-
mate,

SE(d̄) = SD/
√
n, (6.1)

where SD = 40.59 is the standard deviation of the values of D and n = 13
is the sample size, i.e., the number of pairs of measured values of PEF. We
then report an approximate 95% confidence interval for the mean difference
in the effectiveness of the two drugs as
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Fig. 6.2. Dot-plot of unpaired PEF values for each of 13 children when treated
with Formoterol (F) and with Salbutamol (S).

d̄± 2× SE(d̄) = (22.9, 67.9).

Table 6.2 summarizes the analysis in a form adaptable to any paired
design, or to the calculation of a 95% confidence interval for the popu-
lation mean of a single batch of data. The name refers to the fact that
intervals constructed in this way have a 95% chance of including the true,
but unknown, difference between the two population means, i.e. the true
difference in efficacy.

Health warning. The number ‘2’ in the last line of Table 6.2 should
strictly be replaced by a number that depends on the sample size, n, but
is within ±0.05 of 2 for n bigger than 27. This need not concern you if
you use statistical software packages to calculate confidence intervals, but
it does mean that you may get slightly different answers to those quoted
above.

6.3.2 Parallel group design

Had the data in Table 6.1 been derived from a parallel group trial, the
scatterplot shown in Figure 6.1 would have made no sense, because the
alignment of the columns would have been arbitrary. An appropriate
diagram would then have been the dot-plot shown as Figure 6.2.

The interpretation of Figure 6.2 is not entirely clear. There is a sugges-
tion that F is more effective on average than S, but the results show wide

Table 6.2. Stages in the calculation of a 95% confi-
dence interval for the population mean of a single batch
of data with sample size n.

Data x1, x2, . . . , xn

Sample mean x̄ = n−1
∑n

i=1 xi

Sample variance s2 = (n− 1)−1
∑n

i=1(xi − x̄)2

Standard error SE(x̄) =
√
s2/n = SD/

√
n

95% confidence interval x̄± 2× SE(x̄)
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variation and considerable overlap between the two drugs. Also, without the
pairing, the extreme result S = 90 does looks a bit odd. If we again accept
the data as they stand, the analysis now begins by calculating separate
sample means, variances and standard deviations for each of the two sets
of results. This gives

F̄ =341.2 s2F =3559.32 SD=59.66 S̄=295.8 s2S=6865.78 SD = 82.86

The standard error of the sample mean difference, d̄ = F̄ − S̄, is

SE(d̄) =
√
2s2p/n where now s2p denotes the pooled sample variance, s2p =

(s2F + s2S)/2 = (3559.32 + 6865.78)/2 = 5212.84, hence sp = 72.21. The
final step in the analysis is again to calculate a 95% confidence interval
for the population mean difference as

d̄± 2SE(d̄) = (−11.3, 102.0).

The numerical value of d̄ is the same as in the paired analysis, but the
standard error is not. As a result, the confidence interval is centred on
the same value, 45.4, but it is substantially wider than before. Under the
parallel group scenario, the result of the trial would have been inconclusive,
because the confidence interval spans zero.

In general, there is no necessity for the two sample sizes to be the same
in a parallel group trial. Table 6.3 sets out the calculations in the general
case of two unequal sample sizes, nx and ny, say. Although the notation
and formulae are now somewhat inelegant, you should be able to satisfy

Table 6.3. Stages in the calculation of a 95% confidence interval for the
population mean difference between two separate batches of data with
sample sizes nx and ny.

Data x1, x2, . . . , xnx

Sample mean x̄ = n−1
x

∑nx

i=1 xi

Sample variance s2x = (nx − 1)−1
∑nx

i=1(xi − x̄)2

Data y1, y2, . . . , yny

Sample mean ȳ = n−1
y

∑ny

i=1 yi

Sample variance s2 = (ny − 1)−1
∑ny

i=1(yi − ȳ)2

Pooled variance s2p = {(nx − 1)s2x + (ny − 1)s2y}/(nx + ny − 2)

Mean difference d̄ = x̄− ȳ

Standard error SE(d̄) =
√
s2p × (n−1

x + n−1
y )

95% confidence interval d̄± 2× SE(d̄)
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yourself that if nx = ny = n, they reduce to the expressions given above
for the asthma data. And the earlier health warning still applies.

6.4 Crossover designs

As noted above, it is legitimate to consider the asthma data as a paired
design because the order of presentation of the two drugs was randomized.
However, because asthmatic symptoms can be exacerbated by unfavourable
weather conditions, it may have turned out that there were systematic
differences in response between the two time periods in which the drugs
were administered and the PEF measured. The paired analysis, although
legitimate, would then have been inefficient, because the difference between
the two time periods would have inflated the standard error of the estimated
treatment effect.

A crossover trial is one in which the order of presentation of two (or
more) treatments is considered as a factor in the experiment, and included
in the analysis accordingly. To re-analyse the asthma data as a crossover
trial, we need to use more information than Table 6.1. The first seven rows
are results from children who received Formoterol in the first time period
and Salbutamol in the second time period, whilst in the remaining six rows
the order of presentation was reversed.

In Section 6.3.1 we quoted a point estimate D̄ = 45.4 for the mean
difference between PEF values obtained using Formoterol and Salbutamol,
respectively. To take account of any effect of time period on the outcome,
we need first to compute two such estimates. From the first seven rows of
Table 6.1 we get D̄1 = 30.7, and for the last six rows we get D̄2 = 62.5.
What are these actually estimating? Let δ denote the population mean
difference between PEF values recorded under drugs F and S administered
in the same time period: this is the parameter of scientific interest. Also,
let τ denote the population mean difference between PEF recorded under
the same drug, but administered in the first and second time period. Then:

D̄1 is estimating δ + τ,

D̄2 is estimating δ − τ.

This suggests considering the following pair of equations,

δ̂ + τ̂ = 30.7,

δ̂ − τ̂ = 62.5.

You can easily check that the solution to this pair of equations is

δ̂ = 46.6, τ̂ = −15.9.

So the crossover analysis gives a slightly different answer than does the
paired analysis. Is it significantly different? And has the crossover analysis
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produced a useful gain in precision? We will give the formal statistical
answer to these questions in Chapter 7, as an example of statistical
modelling.

Senn (2002) gives a good discussion of the design and analysis of
crossover trials and their use in clinical research.

6.5 Comparing more than two treatments

Both the parallel group and paired designs generalize immediately to
experiments whose aim is to compare more than two treatments.

The generalization of the parallel group design, usually called the
completely randomized design, allocates the experimental units randomly
amongst the k > 2 treatments. Specifically, if nj denotes the number of
units to be allocated to treatment j, and n = n1 + · · ·+ nk, then we first
pick a random sample of n1 out of the n units to receive treatment 1, then
a random sample of n2 out of the remaining n− n1 to receive treatment 2,
and so on.

The generalized version of the paired design is called the randomized
block design. It requires the experimenter to identify blocks of k experi-
mental units and allocate the treatments 1, 2, . . . , k randomly amongst the
k units in each block.

Calculation templates analogous to those set out in Tables 6.2 and
6.3 can be written down, but are not especially illuminating. Rather than
pursue this topic here, we shall revisit it in Section 7.6.5, where we will show
how the analysis of an experiment to compare more than two treatments
can be cast as a special case of statistical modelling.



7

Statistical modelling: the effect of
trace pollutants on plant growth

7.1 Pollution and plant growth

When the water supply used to irrigate food crops contains traces of
contaminant, there is a danger that the growth of the crop will be affected
adversely. The likelihood of this happening is greater in the case of intensive
farming, where irrigation and the application of pesticides or weedkillers
may go hand in hand, and run-off water from irrigated crops may be
recycled to reduce waste.

Figure 7.1 shows the results of an experiment conducted in the
CSIRO’s Centre for Irrigation Research, Griffith, New South Wales,
in which young safflower plants were grown in water deliberately
contaminated with specified concentrations of glyphosate, a widely
used weedkiller. The inputs to each run of the experiment were the
concentration of glyphosate in parts per million (ppm) and whether the
glyphosate had been added to distilled or to tap water. Using distilled
water, six runs were made with no added glyphosate and three at each of
the concentrations 0.053, 0.106, 0.211, 0.423, 0.845, 1.690 and 3.380 parts
per million. The experiment was then repeated using tap water instead
of distilled water. The output from each run was the total root length of
a batch of 15 plants. In more statistical terminology, we are dealing with
n = 2× (6 + 3× 7) = 54 replicates of an experiment with a single, contin-
uously varying response (total root length), a continuously varying design
variable (glyphosate concentration) and a binary factor (type of water).

An obvious qualitative conclusion from these data is that total root
length tends to decline as the concentration of glyphosate increases. Our
main aim in building a model for the data is to quantify this relationship,
whilst a secondary aim is to establish whether the relationship is affected
by which type of water is used. Notice that the non-zero concentrations
used in the experiment represent successive dilutions of the maximum con-
centration, by a factor of two in each case. This is a practically convenient
design, but we shall see later that it is also a sensible choice from the point
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Fig. 7.1. Total root length of batches of safflower plants grown in water conta-
minated with specified concentrations of glyphosate (parts per million). Solid dots
are for plants grown in distilled water, open circles are for plants grown in tap
water.

of view of modelling the relationship between glyphosate concentration and
root length.

7.2 Scientific laws

Scientific laws are expressions of quantitative relationships between vari-
ables in nature that have been validated by a combination of observational
and experimental evidence.

As with laws in everyday life, accepted scientific laws can be challenged
over time as new evidence is acquired. The philosopher Karl Popper
summarizes this by emphasizing that science progresses not by proving
things, but by disproving them (Popper, 1959, p. 31). To put this another
way, a scientific hypothesis must, at least in principle, be falsifiable by
experiment (iron is more dense than water), whereas a personal belief need
not be (Charlie Parker was a better saxophonist than John Coltrane).

7.3 Turning a scientific theory into a statistical model:
mechanistic and empirical models

We now revisit our discussion in Chapter 2 of the lab experiment designed
to illustrate one of Newton’s laws of motion, namely that a body in
free fall under the influence of the Earth’s gravity experiences a constant
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acceleration. To turn this scientific law into a mathematical model we use
the integral calculus to deduce that the relationship between the vertical
distance, d, fallen by a body initially at rest and the time, t, since the body
began falling can be expressed by the equation

d =
1

2
gt2. (7.1)

If we so choose, we can equally well rearrange equation (7.1) as in Chapter 2
to give

y = βx, (7.2)

where now y denotes time, x =
√
d and β =

√
2/g. As we discussed in

Chapter 2, to a mathematician, (7.1) and (7.2) are saying precisely the
same thing. But (7.2) is more useful because it shows us how we can
easily falsify Newton’s law (if, of course, it is indeed false) by picking three
different values of x, recording the corresponding values of y and plotting
the three points (x, y) on a graph to see whether they do or do not lie along
a straight line. But this is a counsel of perfection. Can we measure distance
and time precisely? Can we set the necessary equipment up in a vacuum,
so as to eliminate completely the extraneous effects of air resistance? The
most we can expect is that the points lie approximately on a straight line.
But this begs the question of what we mean by ‘approximately’. Now the
value of the re-expression (7.2) becomes apparent: x is an input to the
experiment, and if we so choose we can repeat the experiment holding
the value of x fixed; in contrast, y is an output from the experiment
and repetitions of the experiment would not generate identical values of
y because of the various imperfections in our equipment, our experimental
technique and so forth. The two panels of Figure 7.2 show two (fictitious)
datasets which could be obtained by running an experiment once under
each of two different experimental conditions and twice under a third. The
pair of results from the repeated experiment give us an idea of how large is
the experimental error. In the left-hand panel, the results would probably
lead us to conclude that these data are compatible with an underlying
linear relationship between the input x and the output y. In the right-hand
panel, three of the four results are the same as in the left-hand panel, but
the repeat run now suggests that the experimental error is extremely small
and we might be more inclined to conclude that the underlying relationship
is non-linear. Of course, in reality such a small experiment would not
convince a sceptical audience one way or the other, but the important
point is that, at least in principle, if we can repeat an experiment under
controlled conditions we can quantify the size of the experimental error
and thereby distinguish between models which are compatible with the
data and models which are not. This is (half of – see below!) the essence
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Fig. 7.2. Two fictitious datasets: in the left-hand panel the data are compatible
with an underlying linear relationship between the input x and the output y; in the
right-hand panel they are not.

of the statistical method, and echoes Popper’s philosophy in the sense that
we may be prepared to rule out many incompatible models (i.e., falsify the
theories that led to them). But demonstrating that a model is compatible
with the data is not to say that the theory behind it is true: there may be
other theories that lead to different, but equally compatible, models and
they can’t all be true.

Why ‘half of’? The answer is that statisticians use the mathematics of
probability to quantify experimental error, and as a result are rarely in a
position to declare that a given model cannot possibly have generated the
data at hand, only that it would be very unlikely to have done so, in a sense
that can be quantified using probability theory (as discussed in Chapter 3).

A statistical model typically includes both deterministic (systematic)
and stochastic (random) components. Sometimes, as is the case for the
lab experiment discussed in Chapter 2, the deterministic component can
be justified by appeal to well-understood scientific laws. The same can
apply, but much more rarely in practice, to the stochastic component. In
our physics lab experiment, we recognized a role for stochastic variation
to represent the unpredictability of human reaction time, but we had no
scientific reason to choose a particular probability distribution to describe
this effect. So we settled for a simple assumption, justified to some extent by
looking at the data, that the variation in reaction time could be modelled
as a random variable that behaved in the same way whatever the value of x.
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Models derived from scientific laws are often called mechanistic models,
to distinguish them from empirical models, whose only claim is that they are
compatible with the data. Mechanistic models are generally preferable to
empirical models, but are not always available; in their absence, empirical
models can still contribute to scientific progress, and have an honourable
track record of doing so for at least the past hundred years.

7.4 The simple linear model

Suppose that we want to investigate the relationship between an input
variable x and an output variable y. The simplest possible mathematical
model for the relationship between x and y is a straight line, or linear
relationship,

y = α+ βx, (7.3)

where α represents the intercept and β the slope of the line (see Figure 7.3).
This model admits three qualitatively different possibilities. The first is that
there is no relationship between x and y, in which case β = 0. The second
is that as x increases, so does y, in which case β is positive. The third is
that as x increases, y decreases, in which case β is negative.

Now suppose that we conduct n independent replicates of the experi-
ment. In the ith replicate we set the value of the input variable to be xi,
and observe the resulting value, yi, of the output variable. To establish
whether the data are compatible with model (7.3) we need only plot the
points (xi, yi) : i = 1, . . . , n and see whether they do or do not lie along
a straight line (assuming that there are at least three different numerical
values amongst the xi). But if the output variable is subject to experimental
error, this test is too stringent.

To allow for experimental error, or more generally for stochastic vari-
ation in y over experimental replicates with the value of x held fixed, we
extend the mathematical model (7.3) to the statistical model

Yi = α+ βxi + Zi : i = 1, . . . , n. (7.4)

The differences between (7.3) and (7.4) are subtle but important. Most
obviously, the additional term Zi on the right-hand side of (7.4) measures
the amount by which each experimental result (xi, Yi) deviates from the
straight line Y = α+ βx. Recall from Chapter 2 that we use upper-case
letters to indicate stochastic variables in the model, and lower-case letters
to indicate deterministic variables. The values of xi are treated as deter-
ministic because the experimenter can fix them in advance.

Recall also that this notational convention allows us to distinguish
between the model (7.4), and the data, (xi, yi) : i = 1, . . . , n, which result
from it. The lower-case yi represents the actual value of the output variable
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Fig. 7.3. Schematic representation of the simple linear model (7.4).

obtained from the ith replicate, whereas the upper-case Yi represents the
stochastic process that generates the observed value yi each time we run the
experiment. Finally, the number of replicates is made explicit to emphasize
that, in contrast to (7.3), our ability to identify appropriate values for α
and β in (7.4) depends on how large n is. Figure 7.3 indicates the different
elements of (7.4) schematically.

To complete the specification of (7.4), we need to make some assump-
tions about the nature of the stochastic variation in the Zi. The standard
assumptions are:

A1: each Zi has mean zero;

A2: the Zi are independent;

A3: each Zi has standard deviation σ, irrespective of the value of xi;

A4: each Zi is Normally distributed.

These assumptions are invoked tacitly by almost any piece of software that
claims to calculate a ‘line of best fit’, but there is no guarantee that they
will hold good in any particular application; we return to this point in
Section 7.7.1 below. For the moment, we note only that they are numbered
in decreasing order of importance. Only A1 is essential, because it implies
that the relationship between the explanatory variable x and the mean of
the response Y is indeed linear. A2 and A3 are important because they
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Fig. 7.4. The Normal probability density function with mean μ and standard
deviation σ.

imply that the standard errors for the intercept and slope parameters α
and β given by standard software are reliable. A4 is only important if the
focus of scientific interest lies in the detailed behaviour of the deviations
from the relationship between x and the mean of Y , rather than in the
relationship itself. Nevertheless, practical experience has shown that A4
does often hold, at least to a good approximation. The so-called Normal
probability distribution (note the upper case N – there is nothing abnormal
about other probability distributions) is described by a symmetric, bell-
shaped probability density function, an example of which is shown in
Figure 7.4. This function includes two parameters, themean, conventionally
denoted by the Greek letter μ, and the standard deviation, σ. When this
distribution is used to describe the stochastic variation about a modelled
value, for example the Zi in equation (7.4), the mean is automatically set to
zero. Approximately 68% of the total probability lies within plus or minus
one standard deviation of the mean, and approximately 95% within plus
or minus two standard deviations. The alert reader may notice, correctly,
that this last statement echoes our earlier definition of a 95% confidence
interval as a sample mean plus or minus two standard errors.

Figure 7.5 shows three simulated datasets, each generated by the
same model, namely (7.4) with α = 3, β = 2, n = 10, xi = 1, 2, . . . , 10
and σ = 0.5. The data (xi, yi) : i = 1, . . . , 10 shown in the three panels of
Figure 7.5 differ only because the corresponding sets of realized values
zi : i = 1, . . . , 10 differ. Note that each panel included two straight lines.
The solid line is the underlying ‘true’ relationship, y = 3 + 2x, and is
identical in all three panels. The dashed lines are the so-called lines of best
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Fig. 7.5. Three simulated datasets. The underlying model is the same in all cases
(see text for details). In each panel the solid dots show the data (xi, yi) : i =
1, . . . , 10, the solid line is the underlying linear relationship y = 3 + 2x, and the
dashed line is the line of best fit.

fit, and differ across the three panels. These are estimates of the underlying
‘true’ relationship, and they differ across the three panels because they are
calculated from the data, (xi, yi) : i = 1, . . . , 10 and inherit the stochastic
character of the yi.

7.5 Fitting the simple linear model

Fitting the simple linear model to a set of data (xi, yi) : i = 1, . . . , n means
choosing numerical values of α and β to give the ‘line of best fit’ to the
data. Because these numerical values are only estimates of the ‘true’ line,
we write them as α̂ and β̂. When the random variation in the data is small,
meaning that in assumption A3 above, σ is negligible compared to the
deterministic variation in the xi, fitting by eye does the job. Otherwise,
and in any event if we want an automatic, reproducible procedure, we need
a criterion to measure how ‘far’ the data points (xi, yi) are from the fitted

line y = α̂+ β̂x.
An objective approach to defining an appropriate criterion is to apply

the method of maximum likelihood, as described in Chapter 3, to the
statistical model defined by assumptions A1 to A4 above. This results in
the rule: estimate α̂ and β̂ to minimize the quantity

LS(α, β) =

n∑

i=1

(yi − α− βxi)
2. (7.5)

In equation (7.5), each term on the right-hand side is just the squared value
of zi, the implied value of the z-value shown on Figure 7.3. This seems a
sensible criterion, but is certainly not the only one. If we replaced A1 to
A4 by a different set of assumptions, the likelihood principle would lead us
to a different criterion, as it should.

Note in particular that (7.5) measures how ‘far’ a point (xi, yi) is
from the line y = α+ βx by the vertical distance between the two. The
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justification for doing so is that the model is intended to describe how
the outcome y can vary for any fixed value of x; hence, if our model is
correct, the points do not lie exactly on the line because of variation in the
y-direction. When both x and y are randomly varying output variables,
then minimizing (7.5) is arguably not the right thing to do.

The ‘LS’ in equation (7.5) stands for ‘least (sum of) squared (residuals)’,
and the method of choosing α and β to minimize LS(α, β) is called least
squares estimation. The likelihood principle tells us that this is the best
possible strategy when assumptions A1 to A4 all hold.

7.6 Extending the simple linear model

The simple linear model often fits experimental data surprisingly well. How-
ever, there is no guarantee that it will do so in any particular application.
In this section, we discuss some ways in which the model can be made more
flexible.

7.6.1 Transformations

In the gravity experiment described in Chapter 2, we fitted a simple linear
model to the data by defining the x-variable to be the square root of
the vertical distance fallen by the ball-bearing. This is an example of
a transformation of the input variable. Transformations of this kind are
unexceptionable; if we can measure and fix the value of x, then we can
equally measure and fix the value of any function, or transformation, of x.
The square-root transformation was suggested by the form of Newton’s law
as d = 1

2gt
2, or equivalently, y = bx, where y = t, x =

√
d and b =

√
2/g is

a constant. Superficially, we could equally well have re-expressed Newton’s
law as y = cx where now y = t2, x = d and c = 2/g. However, had we done
so, there would have been no justification for simply adding a random term
to the right-hand side to explain why the observed data did not exactly
follow the theoretical linear relationship between x and y: instead, the
effects of random variation in human reaction time would have entered into
the model in a very complicated way as random additions to the square
root of y. The message to take from this is that any decision to transform
the output variable needs careful consideration.

Notwithstanding the conclusion of the previous paragraph, if our data
arise in a context where there is no well-accepted scientific law to describe
the relationship between the input and output variables, choosing a trans-
formation of either or both variables empirically is often a useful way to
make the simple linear model a better approximation to the underlying
scientific truth, whatever that may be.

The glyphosate data illustrate this idea. The left-hand panel of
Figure 7.6 is identical to Figure 7.1 except for the aspect ratio of the
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Fig. 7.6. Total root length of batches of safflower plants grown in water conta-
minated with specified concentrations of glyphosate. In the right-hand panel, the
x-axis has been changed from concentration to log(1 + concentration). Solid dots
are for plants grown in distilled water, open circles are for plants grown in tap
water.

diagram, whereas the right-hand panel shows the same data, but now
using the x-axis to represent log(1 + concentration). Why did we choose
this particular transformation? Firstly, the experimental protocol of using
successive two-fold dilutions suggested that the experimenter had in mind
that the effect of varying concentration might be multiplicative rather
than additive; secondly, the +1 preserves the zero point, since log(1) = 0.
The transformation has reduced the strength of the visual impression of
curvature in the relationship, but probably has not eliminated it altogether.
Also, the outcome variable, total root length, appears to vary more at
low concentrations than at high concentrations, in violation of assumption
A3. There are several ways to deal with this second concern. One is
to ignore it; the standard least-squares fitting procedure will still give
sensible estimates of α and β. A better way is to modify the procedure
to recognize that the variability in Y depends on the value of the input
variable, x.

One way to modify the procedure is to replace the least squares criterion
(7.4) by a weighted least squares criterion,

WLS(α, β) =

n∑

i=1

(yi − α− βxi)
2/v(xi). (7.6)
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Ideally, the v(xi) in (7.6) should be proportional to the variance of the
output variable Y when the input variable takes the value xi, this being
another application of the method of maximum likelihood.

Another possibility is to explore the effects of possible transformations
of the output variable. This has two effects: it changes the shape of the
curve (the aim being to find a transformation such that the curve becomes
a straight line); and it changes the way in which the variability in Y does
or does not depend on the value of x (the aim being to achieve a constant
variance). There is no guarantee that these two aims are mutually com-
patible. Nevertheless, and again primarily for illustration, Figure 7.7 shows
the effect of transforming both the x-variable, to log(1 + concentration) as
before, and the y-variable, to log(root length).

Purely from an empirical point of view, the right-hand panel of
Figure 7.7 looks reasonably well described by the simple linear model.
Whether or not it gives a biologically satisfying explanation of the way in
which trace contamination with glyphosate leads to deterioration in plant
growth is a much harder question, and can only be answered through a
dialogue between statistician and scientist. Statistical modelling is straight-
forward when the data are from a tightly controlled experiment operating
according to well-accepted scientific laws. In other situations it is less
straightforward, and arguably as much an art as a science.
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Fig. 7.7. Total root length of batches of safflower plants grown in water conta-
minated with specified concentrations of glyphosate. In the right-hand panel, the
x-axis has been changed from concentration to log(1 + concentration) and the y-
axis from root length to log(root length). Solid dots are for plants grown in distilled
water, open circles are for plants grown in tap water.
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7.6.2 More than one explanatory variable

So far, we have only discussed models for the relationship between the
response variable and a single explanatory variable. If we have two explana-
tory variables, say x and u, we can easily extend the simple linear model
(7.4) to a model of the form

Yi = α+ βxi + γui + Zi : i = 1, . . . , n.

To visualize this model, the analogue of Figure 7.3 would be a collection of
points (x, u, Y ) distributed around an inclined plane in three-dimensional
space, rather than around a straight line in two-dimensional space.

If we have more than two explanatory variables, we obtain the general
linear model,

Yi = α+ β1x1i + β2x2i + · · ·+ βpxpi + Zi : i = 1, . . . , n. (7.7)

A direct visualization is not available, but the principle is the same. We
can rewrite (7.7) as a pair of equations,

Yi = μ(x1i, . . . , xpi) + Zi : i = 1, . . . , n,

μ(x1i, . . . , xpi) = α+ β1x1i + · · ·+ βpxpi. (7.8)

Then, μ(x1i, . . . , xpi) represents the model’s best prediction of the value
of a future response Y when the explanatory variables take the values
x1i, . . . , xpi, whilst Zi, called the residual, is the difference between an
actual response Yi and its predicted value μ(x1i, . . . , xpi) according to the
model. As we shall see in Section 7.7.1 this representation of the model
leads to a way of checking the compatibility of the model for any number
of explanatory variables.

7.6.3 Explanatory variables and factors

Recall from earlier chapters that the terms explanatory variables and factors
are both used to describe variables that affect the outcome of an experiment
and that, conventionally, the former is used when the variable in question
takes values over a continuous range (e.g., the concentration of glyphosate)
and the latter when it takes only a discrete set of values (e.g., distilled
or tap water). Both kinds can be accommodated within the general linear
model (7.7).

7.6.4 Reanalysis of the asthma trial data

The way to include factors within the general linear model (7.7) can most
easily be explained through a specific example, such as the asthma trial
that we discussed in Chapter 6. In that example, the response variable Yi

was the PEF measured on the ith child and our objective was to compare
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the mean values of PEF obtained under two different drug treatments,
Formoterol (F) and Salbutamol (S). In Chapter 6 we represented this by
writing the two mean values as μF and μS . But since we were mainly
interested in the difference, if any, between the effectiveness of the two
drugs it would have been at least as natural to write the two means as
μF = α and μS = α+ δ, where δ represents the population mean difference
in PEF achieved under administration of F and S. Now, if we define a
variable x to take the value x = 0 for a PEF measurement taken after
administration of S and x = 1 for a measurement taken after adminis-
tration of F, it follows that both μF and μS can be defined by the
single equation μi = α+ δxi : i = 1, . . . , 26, and the responses Yi can be
modelled as

Yi = α+ δxi + Zi : i = 1, . . . , 26, (7.9)

in other words as a special case of the general linear model.
Because the asthma trial used a paired design, we cannot assume that

the pairs of residuals Zi from the same child are independent. But if we
subtract each child’s S measurement from their F measurement to obtain
a single value, Di say, for each child, then equation (7.9) reduces to

Di = δ + Z∗
i : i = 1, . . . , 13, (7.10)

where now the Z∗
i are independent. Equation (7.10) is the basis of the sim-

ple analysis that we described in Section 6.3.1 and can now be seen as a very
simple example of the general linear model as defined by equation (7.7).

We shall now revisit the crossover analysis of these same data. In
Section 6.4, we defined δ as above, and τ as the population mean difference
in PEF in time periods 1 and 2. Now, in addition to the explanatory
variable x that indicates which drug was administered (x = 0/1 for S
and F, respectively), we define a second explanatory variable u = 0 for
a PEF measurement taken in the second time period and u = 1 for a PEF
measurement taken in the first time period. This gives the extended model

Yi = α+ δxi + τui + Zi : i = 1, . . . , 26. (7.11)

If we now take the difference between the two measured PEF values on
each of the 13 children, again subtracting their S measurement from their
F measurement, we eliminate α as before, but not τ , because the difference
between the corresponding values of u will be either plus or minus one,
depending on whether the child in question received F in the first or the
second time period, respectively. So the model for the difference Di is now

Di = δ + τvi + Z∗
i : i = 1, . . . , 13, (7.12)
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where the explanatory variable v takes values plus or minus one. This is
again a special case of the general linear model (7.7).

We can now use the model (7.12) to answer the questions that we left
hanging at the end of Section 6.4.

Recall that the paired analysis of the asthma data gave the point
estimate δ̂ = 45.4 with associated 95% confidence interval (22.9, 67.9). In
Section 6.4 we gave what seemed an intuitively reasonable point estimate
of δ, adjusting for a time-period effect, as δ̂ = 46.6. The difference between
45.4 and 46.6 is not clinically significant, but is the estimate from the
crossover analysis any more precise? Part of the output from fitting the
model (7.12) in R is

Coefficients:

Estimate Std. Error

(Intercept) 46.61 10.78

v -15.89 10.78

Residual standard error: 38.74 on 11 degrees of freedom

The rows labelled (Intercept) and v give the estimates of the parameters δ
and τ , respectively. The results confirm that the intuitive estimates δ̂ = 46.6
and τ̂ = −15.9 quoted in Section 6.4 are in fact the maximum likelihood
estimates under the assumed model. More importantly, the 95% confidence
interval for δ is now 46.61± 2× 10.78 = (25.0, 68.2), to one decimal place.
The width of this confidence interval is 43.2, only slightly narrower than
the width 45.0 obtained from the paired analysis. Notice, however, that
the 95% confidence interval for the time-period effect, τ is (−37.4, 5.7),
which includes zero. So in this trial, there is no compelling evidence of
a time-period effect, and it is therefore not unreasonable that adjusting
for it through the crossover analysis gives only a modest improvement in
precision.

7.6.5 Comparing more than two treatments

As a second example, we pick up the brief discussion of Section 6.5
concerning the analysis of comparative experiments involving more than
two treatments. Let p denote the number of treatments, and define p
explanatory variables x1, . . . , xp amongst which xk takes the value xik = 1
if the ith subject is allocated to treatment k, xik = 0 otherwise. Then, the
response Yi : i = 1, . . . , n can be modelled as

Yi = β1xi1 + . . .+ βpxip + Zi, (7.13)

again a special case of the general linear model (7.7).
As a specific example, we consider the 12 measured expression levels

of Gene 2 in Table 4.1. As the response variable y, we use log-base-



EXTENDING THE SIMPLE LINEAR MODEL 93

two-transformed expression level. For a first analysis we codify the four
combinations of strain (wild-type or Ca resistant) and calcium challenge
(low or high) as a single factor with four levels:

1 wild-type low

2 wild-type high

3 Ca resistant low

4 Ca resistant high

There is more than one way to translate this into a linear model of the form
(7.13). Perhaps the most obvious is to define four explanatory variables,
say x1, x2, x3 and x4, as indicator variables for the four treatments, i.e.,
x1 = 1 when the allocated treatment is 1, zero otherwise, and similarly for
x2, x3 and x4. Then, the corresponding parameters β1, . . . , β4 in (7.13)
represent the mean values of the response under each of the four treat-
ment allocations. Part of the output from fitting this model in R is as
follows:

Coefficients:

Estimate Std. Error

treatment1 2.6269 0.1636

treatment2 2.5702 0.1636

treatment3 2.7448 0.1636

treatment4 2.9433 0.1636

Residual standard error: 0.2834 on 8 degrees of freedom

The column headed Estimate gives the estimated values β̂1 to β̂4, whilst
the column headed Std.Error gives their estimated standard errors; these
all take the same value because the software uses a pooled estimate of the
variances under all four treatments, and the replication is the same for
all treatments. The Residual standard error is slightly misnamed. It is
the pooled estimate of the standard deviation, i.e., s2pooled = 0.28342 =

0.0803, and the reference to 8 degrees of freedom is simply saying that
four regression parameters have been estimated from 12 observations, i.e.,
8 = 12− 4.

Often, treatment means themselves are less interesting than differences
between treatment means. If there is a natural baseline treatment relative
to which the other treatments are to be compared, we can translate this
into a linear model by defining x1 = 1 whatever the allocated treatment,
x2 = 1 for treatment 2 and zero otherwise, x3 = 1 for treatment 3 and
zero otherwise, x4 = 1 for treatment 4 and zero otherwise. With these
definitions, the software output becomes:
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Estimate Std. Error

(Intercept) 2.6269 0.1636

treatment2 -0.0567 0.2314

treatment3 0.1178 0.2314

treatment4 0.3163 0.2315

Residual standard error: 0.2834 on 8 degrees of freedom

Now, the row labelled (Intercept) relates to the parameter β1, which
still represents the estimated mean response under treatment 1, whereas
the remaining three rows relate to parameters β2, β3 and β4, which now
represent differences between the mean response under treatments 2 and
1, 3 and 1, 4 and 1, respectively. The values of β̂1 and s2pooled are the

same in both cases, as they should be, because all we are doing is fitting
two different representations of the same model, i.e., one in which the
four treatment means are different. Notice that the one case in which the
standard error is smaller than the corresponding parameter estimate is
for the difference in mean response between treatments 4 and 1, which
compares the Ca-resistant strain under a high calcium challenge with the
wild-type strain under a low calcium challenge. The 95% confidence interval
for this difference is 0.3163± 2× 0.2315 = (−0.1467, 0.7793). Recall that
the aim of the original experiment was to find genes that are involved
in regulating the plant’s response to calcium: specifically, an ‘interesting’
gene is one that shows a relatively large differential response between low
and high calcium challenges in the Ca-resistant strain and a relatively low
differential response in the wild-type strain. Hence, although the confidence
interval is inconclusive, it at least hints that this particular gene may be
so involved.

We can do a better job of formulating our model to capture the scientific
aim by incorporating the factorial structure of the four treatments. This
leads to the following definitions of the four explanatory variables:

x1 1

x2 1 for Ca-resistant strain, 0 otherwise

x3 1 for high calcium challenge, 0 otherwise

x4 1 for Ca-resistant strain under high calcium challenge, 0 otherwise

The corresponding interpretation of the β-parameters, using the terminol-
ogy from Section 5.4, is:

β1 mean response for wild-type strain under low calcium challenge

β2 main effect of strain (Ca-resistant vs. wild-type strain)

β3 main effect of calcium challenge (high vs. low)

β4 interaction
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The corresponding software output is:

Estimate Std. Error

(Intercept) 2.62694 0.16361

strain 0.11782 0.23138

challenge -0.05675 0.23138

strain:challenge 0.25525 0.32722

Residual standard error: 0.2834 on 8 degrees of freedom

Note in particular that the interpretation of the estimated interaction
effect (strain:challenge) is that the Ca-resistant strain shows a greater
differential response from the low to the high challenge than does the wild-
type strain, by an estimated amount 0.25525 with associated approximate
95% confidence interval 0.25525± 2× 0.32722 = (−0.39919, 0.90969). The
result is therefore inconclusive. This is unsurprising. For the purposes of
this illustrative analysis, the four genes whose results are given in Table 4.1
were selected arbitrarily. The number of genes involved in regulating the
calcium challenge is likely to be small, making it very unlikely that we
would find such a gene in a random sample of four from the 22,810 possible
candidates.

7.6.6 What do these examples tell us?

An important conclusion to be drawn from the analyses described in
Sections 7.6.4 and 7.6.5 is that the same software can be used to fit models
that include both explanatory variables and factors. This in turn implies
that there is no need to learn cumbersome algebraic formulae to analyse
different experimental designs.

7.6.7 Likelihood-based estimation and testing

The method of maximum likelihood can be used to estimate the para-
meters in any statistical model. The likelihood function can also be used
to compare models, and in particular to decide whether an explanatory
variable warrants inclusion in the model by using a likelihood ratio test
as described in Section 3.4. Suppose that we have identified a provisional
model with p explanatory variables x1, . . . , xp and associated regression
parameters β1, . . . , βp and want to decide whether another explanatory
variable, xp+1 say, should be added to the model. Then, the provisional
model becomes a special case of the extended model, with the constraint
that βp+1 = 0. The discussion of likelihood ratio testing in Section 3.4 now
applies, with θ = (β1, . . . , βp, βp+1) and θ0 = (β1, . . . , βp, 0). Hence, if we
write L0 and L1 for the maximized values of the log-likelihood associated
with the provisional and extended models, respectively, we would reject
the provisional model in favour of the extended model, i.e., include the
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explanatory variable xp+1, if D is bigger than the value in Table 3.2
corresponding to m = 1 and the chosen level of significance (conventionally,
5%, in which case the value to use is c1 = 3.84.)

Sometimes we need to consider adding a set of explanatory variables,
rather than a single one. Suppose, for example, that the provisional model
is a simple linear regression, whilst the extended model allows the slope
parameter, β, to depend on a factor with three levels. Then, the extended
model is

Y = α+ βjx+ Z : j = 1, 2, 3,

and the provisional model assumes that β1 = β2 = β3. Equivalently, we can
parameterize the extended model as θ = (β1, β2 − β1, β3 − β1), in which
case θ0 = (β1, 0, 0). The key point is that whatever parameterization we
choose to use, the extended model has two more parameters than the
provisional model, and the appropriate critical value for the likelihood ratio
test can be found in Table 3.2 in the column corresponding to m = 2.

7.6.8 Fitting a model to the glyphosate data

Based on the discussion of the glyphosate data in Section 7.6, we use
as our provisional model a linear regression of Y = log(root length) on
x = log(1 + concentration) with separate intercepts for distilled and tap
water, but a common slope, hence

Y = α1 + α2t+ βx+ Z, (7.14)

where t = 0 for plants grown in distilled water and t = 1 for plants grown in
tap water, hence α2 denotes the difference between the mean of Y for plants
grown in tap water rather than in distilled water, at any fixed concentration
of glyphosate. Parameter estimates and standard errors are given in the
following table:

Parameter Estimate Standard error

α1 4.7471 0.0639
α2 0.0609 0.0771
β −0.9456 0.0795

Note that the 95% confidence interval for α2 is 0.0609± 2× 0.0771, or
(−0.0933, 0.2151). This interval includes zero, suggesting that the difference
between tap and distilled water is not statistically significant. Probably of
more interest is the estimate of β, which describes how the mean root length
declines with increasing concentration of glyphosate in the water. The 95%
confidence interval for β is −0.9456± 2× 0.0795, or (−1.1046,−0.7866),
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which clearly excludes zero. To complete the picture, the 95% confidence
interval for α1 is (4.6193, 4.8749).

The maximized log-likelihood for this model is L0 = 69.67. One way
to extend the model is to allow both the intercept and slope to depend
on whether the plants are grown in distilled or tap water. This replaces
the single parameter β by two parameters, β1 and β2. The maximized
log-likelihood for the extended model is L1 = 69.88, hence the likelihood
ratio statistic to compare the provisional and extended models is D = 2×
(69.88− 69.67) = 0.42. Since this is comfortably less than 3.84, we have
no reason to reject the provisional model. We therefore conclude that the
relationship between root length and glyphosate concentration, as described
by the parameter β, does not depend on whether the glyphosate is added
to distilled or to tap water.

Purely on statistical grounds, we could equally argue that the provi-
sional model (7.14) could be simplified by setting α2 = 0. We choose not for
two reasons. Firstly, in designed experiments, as opposed to observational
studies, variables included in the study-design should generally be retained
in the model, irrespective of their statistical significance. Secondly, the
hypothesis that mean root length is the same for plants grown in distilled
and in tap water is not of any scientific interest, nor is it particularly
plausible as tap water contains small quantities of a range of nutrient
minerals and other substances that may well affect growth. In contrast,
it is both plausible and of some interest to ask whether the deleterious
effect of trace concentrations of glyphosate does or does not depend on the
chemical composition of the uncontaminated water supply.

To assess the precision of our estimate of the parameter of interest, β,
the estimate and its confidence interval are difficult to interpret because
they relate to transformed values of both the response and the explanatory
variable. A more useful way to express the result obtained from the model
(7.14) is to see how the fitted response curves change as β varies over its
confidence interval. Writing g and r for glyphosate concentration and mean
root length, respectively, our fitted model for plants grown in distilled water
is log r = α1 + β log(1 + g), or equivalently

r = exp{α1 + β log(1 + g)}. (7.15)

For plants grown in tap water, we would need to replace α1 in (7.15) by
α1 + α2. Figure 7.8 shows four versions of (7.15), corresponding to all four
combinations of α1 and β at the lower and upper ends of their respective
confidence intervals, together with the data from plants grown in distilled
water, and gives a more easily interpretable summary of how precisely
we have been able to describe the relationship between root length and
glyphosate concentration.

A subtle technical point is that (7.15) should, strictly, be adjusted to
allow for the effect of reversing the log-transformation of the response
variable. The correct expression is
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Fig. 7.8. Total root length of batches of safflower plants grown in distilled water
contaminated with specified concentrations of glyphosate (solid dots), and fitted
mean response curves with intercept and slope parameters set at each end of their
respective confidence intervals. Solid lines and dashed lines correspond to the lower
and upper confidence limits, respectively, for α. Within each line style, the lower
and upper curves correspond to the lower and upper confidence limits, respectively,
for β.

r = exp{α1 + β log(1 + g) + σ2/2},

where σ2 is the variance of the residual term, Z, in the fitted regression
model.

7.7 Checking assumptions

Models rest on assumptions that may or may not be compatible with
the data. All statistical models acknowledge that the features of scientific
interest in the results of an experiment may be partially obscured by
unpredictable variation in the outcome. We represent this by including in
our model one or more random variables. A symbolic mnemonic for this is

DATA = SIGNAL + NOISE

This applies literally in the case of the general linear model (7.8), in which
the Yi are the data, the μ(xii, . . . , xpi) are the signal and the Zi are the
noise. Although we are unable to observe the noise directly, we are able to
estimate it by substituting into the model our best estimate of the signal,
and deducing the corresponding values of the noise. For the general linear
model, we do this by calculating the fitted values,
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μ̂i = α̂+ β̂1x1i + · · ·+ β̂pzpi (7.16)

and the residuals,

ẑi = yi − μ̂i. (7.17)

Diagnostic checking is the process by which we compare the data with the
fitted model in ways that are designed to reveal any major incompatibilities.
It turns out that many of the most effective ways of doing this involve
analysing the residuals in various ways, as we now describe. We continue
to work within the specific context of the general linear model, although
the ideas apply more generally.

7.7.1 Residual diagnostics

Recall the four assumptions on which the general linear model rests:

A1: each Zi has mean zero;

A2: the Zi are independent;

A3: each Zi has standard deviation σ, irrespective of the value of xi;

A4: each Zi is Normally distributed.

Collectively, these assumptions require that the residuals should behave in
every respect as if they were an independent random sample from a Normal
distribution with zero mean and constant variance.

Figure 7.9 shows a simple but instructive example, devised by the
statistician Frank Anscombe, of how the pattern of the residuals can reveal
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Fig. 7.9. Anscombe’s quartet: four synthetic datasets that give the same fitted
linear regression model.
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a range of departures from the assumptions A1 to A4. In all four cases,
fitting a simple linear regression model to the data gives the following
table of results:

Parameter Estimate Standard error

α 3.0001 1.1247
β 0.5001 0.1179

However, the four datasets give very different patterns of residuals, here
shown in Figure 7.10 as scatterplots of the residuals against their corre-
sponding fitted values. In the top-left panel, the residuals behave as we
would wish them to, i.e., an apparently random pattern, suggesting a good
fit between model and data. In the top-right panel, there is a very clear
pattern, whose explanation is that we have fitted a linear regression when
the true relationship between x and y is non-linear. The bottom-left panel
suggests a perfect linear relationship, but with one aberrant data point,
which in practice might have arisen either from a failure of the experiment
or a simple mis-recording of the result. Finally, the bottom-right panel gives
no evidence for or against the model, since with only two distinct values of x
in the data, one of which is unreplicated, we can neither check the assumed
linearity of the relationship (A1) nor the constancy of the variance (A3).
An experimental design in which half of the measurements are made at
opposite extremes of the relevant range of x is actually the most efficient
design possible if the modelling assumptions are known to hold in advance
of the experiment, but is a very risky design otherwise.
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Fig. 7.10. Anscombe’s quartet: residual against fitted value plots.
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Once you have seen Figure 7.9, the subsequent residual plot, Figure 7.10,
holds no surprises. However, if the model includes more than one explana-
tory variable, the analogue of Figure 7.9 requires a multidimensional repre-
sentation. This is more difficult to interpret with two explanatory variables,
and well nigh impossible with more than two, whereas the analogue of
Figure 7.10 is always two-dimensional.

A scatterplot of residuals against fitted values is the single most useful
kind of diagnostic plot. However, it does not directly address assumption
A3: independence of residuals. One common circumstance in which A3 is
violated is when repeated measurements are made on the same, or related
experimental units. When the number of experimental units is small, for
example when data from several different labs are to be combined for analy-
sis, independence can usually be restored by including labs as a factor in the
model. Otherwise, as for example in human studies involving all members
of a large number of families, non-routine statistical methods are usually
needed to deal with the resulting dependence between measurements made
on either the same person, or on different members of the same family.

The independence assumption can also be violated when data are
obtained in time order and there is any form of carry-over between suc-
cessive runs of the experiment, for example because of a drift over time
in the micro-environment in which the experiment is conducted. For this
reason it is always a good idea to plot residuals against the time at which the
corresponding datum was obtained whenever this information is available.

An extreme form of time-ordered data is a single time series, an example
of which is the Bailrigg temperature data that we discussed briefly in
Section 4.5.1. The dominant feature of that series is the seasonal variation
in temperature. As we shall see in Chapter 9, a good model for the seasonal
pattern is a general linear model using sine and cosine terms as explanatory
variables. Here, we simply show in Figure 7.11 the residual time series
obtained by subtracting the fitted seasonal curve from the data. Notice that
at various points along the series there are relatively long runs of positive
residuals followed by runs of negative residuals. This suggests a lack of
independence, although we postpone confirmation of this until Chapter 9.

7.7.2 Checking the model for the root-length data

Our fitted model for the glyphosate data is given by equation (7.14) with

parameter values α̂1 = 4.7471, α̂2 = 0.0609 and β̂ = −0.9456. Using these
values, we can convert the 54 data points yi to fitted values,

fi = α̂1 + α̂2ti + β̂xi

and residuals, ẑi = yi − fi.
Figure 7.12 shows a scatterplot of residuals against fitted values, using

different plotting symbols to distinguish between plants grown in distilled
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Fig. 7.11. Time series of residuals, after subtracting a seasonal curve from the
Bailrigg temperature data.

3.5 4.0 4.5

−0.6

−0.4

−0.2

0.0

0.2

0.4

fitted values

re
si

du
al

s

Fig. 7.12. Residuals against fitted values plot for model (7.14) fitted to the
glyphosate data. Residuals corresponding to plants grown in distilled and in tap
water are shown by solid dots and open circles, respectively.
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or in tap water. The plot shows an apparently random scatter, both overall
and within each of the two water types. Also, there is no obvious tendency
for residuals to be systematically larger for one water type than for the
other. The model therefore appears to provide a good fit to the data.

7.8 An exponential growth model

We have seen through our analysis of the root-length data how we can use
transformations of either explanatory variables or the response variable to
convert a non-linear relationship into a linear one. Another example, widely
encountered in the natural sciences, is the phenomenon of exponential
growth. To make this tangible, we consider a set of data consisting of
five-yearly estimates of the total population of the world, between 1950
and 2010. Call these yt, where t runs from one (year 1950) to 13 (year
2010). Table 7.1 shows the values of yt, together with successive differences,
dt = yt − yt−1, and ratios, rt = yt/yt−1.

The differences vary substantially, by a factor of approximately two
within the time span of the data. The ratios show much smaller rela-
tive changes, although they are somewhat lower towards the end of the
sequence. Exponential growth is a mathematical model of the form

μt = exp(α+ βt), (7.18)

where, as in the pair of equations (7.8), μt denotes the mean of Yt. In this
model, exp(α) is the initial size of the population, i.e., the value of Yt at
time t = 0, and β is the growth rate, expressed as a proportion; hence, for

Table 7.1. Estimated world population, in thou-
sands, at five-yearly intervals between 1950 and 2010
(source: United Nations Population Network).

Year Population Difference Ratio

1950 2529346 NA NA
1955 2763453 234107 1.093
1960 3023358 259905 1.094
1965 3331670 308312 1.102
1970 3685777 354107 1.106
1975 4061317 375540 1.102
1980 4437609 376292 1.093
1985 4846247 408638 1.092
1990 5290452 444205 1.092
1995 5713073 422621 1.080
2000 6115367 402294 1.070
2005 6512276 396909 1.065
2010 6908688 396412 1.061
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example, if the population grows by 5% per year, β = 0.05 (strictly, the
growth rate is exp(β)− 1 but this is approximately equal to β if β is a
small fraction). Now, equation (7.18) implies that

log μt = α+ βt. (7.19)

This suggests that taking log Yt as the response, we could use a linear
model to estimate the growth rate, β, and the initial true population size,
exp(α). If we do this using the least squares criterion (7.5), we are implicitly
assuming that errors in the transformed responses log Yt are additive, i.e.,
that log Yt = log μt + Zt. This may or may not be a reasonable assumption,
but we can at least check whether or not it is compatible with the data
using the methods described in Section 7.7.1.

To see how this works for the world population data, Figure 7.13 plots
the logarithms of population estimates against year. The linear model turns
out not to be a good fit, as a consequence of a slowing in the growth rate
towards the end of the time-period covered by the data. To emphasize this,
Figure 7.13 includes the result of fitting a linear model to the first nine
observations only, covering the period 1950 to 1990. This gives an almost
perfect fit, but extrapolates poorly beyond 1990.
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Fig. 7.13. Estimates of log-transformed total world population, at five-yearly
intervals from 1950 to 2010. The line corresponds to the fit of an exponential growth
model to the estimates up to 1990 only.
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With a little ingenuity, we can accommodate this behaviour as yet
another special case of the general linear model (7.7). Let x denote the
years, subtracting 1950 from each so that the time period begins at zero.
Hence, x = 0, 5, 10, . . . , 60. Let y denote the corresponding log-transformed
population estimates. Now define a second explanatory variable u to take
the values

u = 0 0 0 0 0 0 0 0 0 5 10 15 20

If we now fit the model

y = α+ βx+ γu+ Z, (7.20)

the regression parameters have the following interpretation. The intercept,
α, represents the logarithm of population size in 1950 (recall that the data
are only estimates); β represents the annual relative growth rate of the
population between 1950 and 1990; finally, γ represents the increase or
decrease in the relative growth rate between 1990 and 2010. An extract
from the output obtained when fitting model (7.20) using R, in the now-
familiar form, is:

Coefficients:

Estimate Std. Error

(Intercept) 14.7406651 0.0032456

x 0.0187380 0.0001285

u -0.0056059 0.0003670

Residual standard error: 0.005373 on 10 degrees of freedom

We therefore estimate the 1950 population size as exp(14.7406651) =
2, 522, 258 thousand, close but not identical to the value 2, 529, 346 recorded
in Table 7.1. Which is the better estimate is a moot point; the value
2, 522, 258 is likely to be the more accurate if the assumed model (7.20)
is correct, and conversely. The model-based estimate does, however, carry
with it an estimate of its precision, again assuming the model to be correct.
To calculate a confidence interval for the required quantity, exp(α), we sim-
ply calculate the corresponding confidence interval for α and exponentiate
both ends of the interval. Using our standard rule, an approximate 95%
confidence interval for α is

α̂± 2× SE(α̂) = 14.7406651± 2× 0.0032456 = (14.73417, 14.74716),

hence an approximate 95% confidence interval for exp(α) is

((exp(14.73417), exp(14.74716)) = (2, 505, 929, 2, 538, 693),

which comfortably includes the tabulated value 2529346.
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Our estimate and approximate 95% confidence interval for the annual
growth rate between 1950 and 1990 are

β̂ ± 2× SE(β̂) = 0.0187380± 2× 0.0001285 = (0.018481, 0.018995),

i.e., a fraction under 2% per year.
Finally, the change in the annual growth rate since 1990 is estimated

to be

γ̂± 2× SE(γ̂) = −0.0056059± 2× 0.0003670 = (−0.0063399,−0.0048719),

a decrease in the growth rate of between 0.5% and 0.6%, i.e., from a little
under 2% to a little under 1.5%. The ouptut shown above does not allow
us to calculate a confidence interval for the post-1990 annual growth rate,
β + γ, but this can be extracted from the full output to give an approximate
95% confidence interval (0.01257637, 0.01368784), i.e., we estimate the
post-1990 annual growth rate to be between about 1.3% and 1.4%.

The fit of this ‘split line’ model to the data is shown graphically in
Figure 7.14. All of the individual data points lie on or very close to the
fitted split line.
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Fig. 7.14. Estimates of log-transformed total world population, at five-yearly
intervals from 1950 to 2010. The line corresponds to the fit of an exponential growth
model that allows a change in the growth rate at 1990.
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7.9 Non-linear models

Using transformations to convert non-linear relationships to linear ones is
not always possible. As an example, consider how a biological population,
for example, of reproducing bacteria, might grow when there is a limit
on the amount of food available to sustain the growing population. If
the initial population size is sufficiently small that food is abundant, the
exponential growth model might hold in the early stages of growth, but
as food becomes a limiting factor, the growth rate might slow down. One
model that captures this behaviour is

μt = γ exp(α+ βt)/{1 + exp(α+ βt)}. (7.21)

This model still describes approximately exponential growth in the early
stages, but the growth rate slows as the population approaches an upper
limit, γ. Figure 7.15 illustrates this.

The so-called logistic growth model (7.21) often gives a good description
of the growth of natural populations, but cannot be transformed into a
linear model of the form (7.8). Models of this kind are called intrinsically
non-linear.

Intrinsically non-linear models violate the first assumption, A1, of the
general linear model. They may still satisfy assumptions A2 to A4, in
which case the method of maximum likelihood still gives the least squares
criterion, here
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Fig. 7.15. A comparison between exponential (dashed line) and logistic (solid
line) growth models.
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LS(α, β, γ) =
∑

t

{Yt − μt(α, β, γ)}2,

as the optimal method for estimating α, β and γ.

7.10 Generalized linear models

In the previous section, we showed how the exponential growth model could
be converted into a linear model by transforming the expression for the
mean response, from μt = exp(α+ βt), to log μt = α+ βt. However, we also
warned that this gave no guarantee that the corresponding transformation
of the response, from Yt to log Yt, would result in a model that would satisfy
the remaining assumptions A2 to A4 of the general linear model.

Generalized linear models pick up on this concern by unlinking assump-
tion A1, which concerns the mean response, from assumptions A3 and A4,
which concern the random variation in the response about its mean. A full
discussion of generalized linear models goes beyond the scope of this book,
but their flavour can be conveyed by two examples, each of which deals
with a situation in which the representation of a response as a mean plus
a Normally distributed residual is clearly, and grossly, wrong.

7.10.1 The logistic model for binary data

Our first example concerns experiments in which the response, Y , is binary,
i.e., Y = 0 or 1. For example, in toxicology experiments we might vary the
dose, x, of a toxin and observe whether this does (Y = 1) or does not
(Y = 0) result in the death of the animal to which the dose was applied.
Now, the mean of Y , μ(x) say, represents the probability that the animal
will be killed, and must lie between 0 and 1 whatever the value of x. A
linear model, μ(x) = α+ βx, does not satisfy this constraint. However, if
we transform μ(x) to the quantity

η(x) = log[μ(x)/{1− μ(x)}], (7.22)

then η(x) can take any value at all: when μ(x) is close to zero η(x) is large
and negative; when μ(x) is close to one η(x) is large and positive. So a
linear model for η(x) might not be unreasonable. Putting η(x) = α+ βx
on the left-hand side of (7.22) and solving for μ(x) gives

μ(x) = exp(α+ βx)/{1 + exp(α+ βx)}. (7.23)

Figure 7.16 gives examples of the function μ(x) defined by equation (7.23).
The value of μ(x) necessarily lies between 0 and 1 for all values of x. The
effect of increasing or decreasing α is to shift the curve to the left or right,
respectively, whilst the effect of increasing or decreasing β is to make the
characteristic S-shape of the curve steeper or shallower, respectively.
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Fig. 7.16. Examples of the inverse logit function (7.23). Parameter values for the
three curves are α = 0, β = 1 (solid line), α = 1, β = 1 (dashed line) and α = 0,
β = 2 (dotted line).

The transformation defined by equation (7.22) is called the logit or
log-odds transformation, whilst equation (7.23) defines the inverse logit.
The inverse logit transformation has the effect of constraining the mean
of Y to lie between 0 and 1, as it must, and the only sensible way to
model random variation in Y is as a series of trials with α, β and x held
fixed, in which the proportion of trials that result in Y = 1 is given by
equation (7.23). The resulting model is called the logistic-linear regression
model, often abbreviated to logistic model, for a binary response. As with
its linear counterpart, we can extend the logistic model by including more
than one explanatory variable on the right-hand side of (7.23), or by
transforming the explanatory variables. For example, Figure 7.17 shows the
functions

μ(x) = exp(−5 + 2x)/{1 + exp(−5 + 2x)}

and

μ(x) = exp(−5 + x+ 0.01x4)/{1 + exp(−5 + x+ 0.01x4)}

over values of x between 0 and 10. Notice how by including x4 as well as x
in the model, we obtain an asymmetric rather than a symmetric S-shaped
curve.
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Fig. 7.17. Linear (solid line) and quartic (dashed line) inverse logit functions.
Note the asymmetry in the quartic case.

7.10.2 The log-linear model for count data

Our second example is a model for experiments whose response Y is a non-
negative count. For example, we might measure the number of seizures
experienced by an epileptic patient over a fixed follow-up period after
administration of a dose x of a particular medication. If the counts are
large, we might be willing to assume a linear model for the relationship
between Y and x, but if the counts are small a linear model may predict
a mean count less than zero, which is clearly impossible. One response
to this is to transform Y to log Y , but this runs into problems because
log 0 is undefined. A pragmatic solution is to transform to log(1 + Y ),
which transforms zero to zero as previously illustrated in our analysis
of the glyphosate data. A more principled approach is to transform the
mean, μ(x), to η(x) = log μ(x) and assume a linear model for η(x), i.e.,
η(x) = α+ βx. The inverse transformation is

μ(x) = exp(α+ βx). (7.24)

To model the random variation in Y , the same argument against a model of
the form Y = μ(x) + Z applies as in the case of binary Y , albeit with less
force if μ(x) is large. Amongst the many options available the simplest, and
the usual starting point, is to assume that Y follows a Poisson probability
distribution. This specifies the probability of observing any non-negative
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integer value of Y as a function of its mean, μ. The algebraic form of the
Poisson distribution is

p(y) = exp(−μ)μy/y! : y = 0, 1, . . . , (7.25)

where y! (read as ‘y factorial’) is a shorthand notation for the quantity
y × (y − 1)× · · · × 1, with the convention that 0! = 1. Figure 7.18 shows
several examples of the Poisson distribution as superimposed frequency
polygons. The distribution is positively skewed, but the skewness decreases
as μ increases.

The class of models in which Y follows a Poisson distribution whose
mean depends on one or more explanatory variables x according to equation
(7.24), or its obvious extension to the case of multiple explanatory variables,
is called the Poisson log-linear regression model.

7.10.3 Fitting generalized linear models

In formulating a linear model for a particular set of data we need to choose
which of the available explanatory variables should be included in the
model, and whether each of the selected variables should be included in
its original or a transformed form (or, indeed, both, as for example in a
quadratic model, Y = α+ βx+ γx2).

In a generalized linear model, we need to make the same choice and two
others. Firstly, the chosen combination of parameters and explanatory vari-
ables does not define the mean response itself but rather a transformation
of the mean response, called the linear predictor and conventionally denoted
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Fig. 7.18. Poisson probability distributions with mean μ = 2 (solid line), μ = 4
(dashed line) and μ = 8 (dotted line).
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η(x). Thus, for example, the logistic model uses η = log{μ/(1− μ)}, whilst
the log-linear model uses η = log μ(x). The transformation from μ to η is
called the link function.

The other choice to be made is what probability distribution we should
use to describe the random variation in Y . For binary Y , there is only
one such distribution, since μ gives the probability that Y = 1 and the
probability that Y = 0 must therefore be 1− μ. For a count Y , one choice is
the Poisson distribution, but there are many others. The chosen distribution
is called the error distribution.

Generalized linear models have transformed the practice of applied
statistics since they were introduced by Nelder and Wedderburn (1972).
One reason for this is that their theoretical development was followed
rapidly by their incorporation into a dedicated statistical software package,
GLIM (Generalized Interactive Linear Modelling), and later into a wide
variety of more general statistical packages. This was possible because
Nelder and Wedderburn showed that essentially the same algorithm could
be used to compute maximum likelihood estimates of the parameters in
any generalized linear model.

7.11 The statistical modelling cycle: formulate, fit,
check, reformulate

Statistical modelling is useful when, for whatever reason, the statistical
analysis protocol for a scientific experiment or observational study has not
been fully specified before the study has been conducted. This is typically
the case in what might loosely be called discovery science, in which the
investigator anticipates finding relationships amongst variables that will
be measured during the course of a study, but cannot anticipate precisely
what form those relationships might take.

In contrast, modelling is generally considered inappropriate for the
initial, or primary analysis of data from tightly controlled experiments
such as an agricultural field trial or a clinical trial whose purpose is to
provide an unequivocal answer to a specific question, typically of the form:
do experimental treatments give significantly different average responses?
However, even in this context, modelling may have a role to play in follow-
up, or secondary analyses.

The distinction between primary and secondary analysis is explicit in
clinical trial protocols. Consider, for example, a completely randomized
trial to compare a novel with a standard therapy, and suppose that the
response from each subject in the trial is a single measure, y say, of their
improvement in health following treatment. The primary analysis of a trial
of this kind would almost certainly be a two-sample t-test, as described in
Section 6.3.2, with the intention of giving a robust answer to the specific
question: is the average value of y significantly higher for patients receiv-
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ing the novel therapy than for patients receiving the standard therapy?
As discussed in Section 5.5, this protocol merits the description ‘robust’
because the random allocation of subjects to treatments automatically
delivers a statistically valid test. A conclusion that the novel therapy gives
significantly the better average result may, if other conditions are satisfied,
result in the novel therapy replacing the current standard. However, it
immediately invites a number of supplementary questions: is the novel
therapy superior for all patients? is it more or less effective in particular
subgroups? in the case of a chronic condition, is its effectiveness long-lasting
or transient? These and other questions can be addressed in secondary
analyses, and modelling can help to provide answers.

After a study has been conducted and the data collected, the process
of statistical modelling includes three distinct activities. The first stage is
to formulate a model for the data that meets two criteria: it is capable
of providing an answer to the scientist’s question; and it is not self-
evidently incompatible with the data. Meeting the second of these involves
exploratory data analysis to decide which of the available explanatory
variables might be worth including in the model, whether their relationship
with the response variable can be captured by a linear model, and whether
there are features of the pattern of variation in the data that require special
consideration; for example, whether apparent outliers represent coding
errors or genuinely aberrant behaviour that, according to context, might
or might not be of particular interest.

The second stage is to fit the model, i.e., to estimate its parameters and
to confirm, or not as the case may be, that variables provisionally included
in the model in stage 1 should be retained. The best advice for this second
stage is to use likelihood-based, rather than ad hoc, methods whenever
possible. Most reputable software packages use likelihood-based methods.

The third stage is diagnostic checking, using the residuals from the fitted
model. In an ideal world, this will lead to the happy conclusion that the
model is compatible with the data, i.e., is a ‘good fit’. In practice, diagnostic
checking may reveal inconsistencies between model and data that were
not apparent earlier, in which case the model should be reformulated and
the modelling cycle repeated. It cannot be overemphasized that likelihood-
based methods of estimation and testing are optimal when the underlying
modelling assumptions are correct but they do not address goodness-of-fit.

Many of the models discussed in this chapter fall within the scope of the
generalized linear model. The authoritative book on this topic is McCullagh
and Nelder (1989). Dobson (2001) is a more accessible introduction.
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Survival analysis:
living with kidney failure

8.1 Kidney failure

The kidney performs the vital function of filtering and thereby removing
toxins that would otherwise accumulate in the body. Kidney failure is
therefore a life-threatening condition. For most forms of kidney failure,
the most effective treatment is a kidney transplant. A successful transplant
provides approximately 50% of normal kidney function, which is more than
sufficient to restore the patient to good health. However, for a number of
reasons including a chronic shortage of donor organs, not every patient can
receive a transplant and others may have to wait for several years before a
suitable donor organ becomes available. For these patients, an alternative
treatment is dialysis. This consists of using an artificial device to filter
toxins, either from the blood (haemo-dialysis) or from the peritoneal fluid
(peritoneal dialysis).

In peritoneal dialysis, several litres of a sugar solution are introduced
into the peritoneal cavity through a tube surgically implanted in the
patient’s abdomen. The sugar solution gradually extracts toxins through
a process of osmosis across the peritoneal membrane. After some hours,
the solution is removed and is replaced by fresh solution. In one version
of the treatment (continuous ambulatory peritoneal dialysis, CAPD) the
removal and replacement of fluid is done by the patient, typically four
times a day, using a simple drain-and-fill sequence driven by the force of
gravity. In a second version (automated peritoneal dialysis, APD) the drain-
and-fill operation is effected by an electrical pump programmed to run
overnight.

Table 8.1 is an extract from a clinical database maintained over a
number of years by Dr Peter Drew, a renal physician at the Maelor Hospital,
Wrexham, North Wales. The data relate to patients being treated by
peritoneal dialysis. For each patient, the data give the time, in days, from
initiation of treatment to the patient’s death. How can we decide which, if
either, version of peritoneal dialysis has the better survival prognosis?
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Table 8.1. Data on survival of kidney failure patients receiving peri-
toneal dialysis. Columns 1 and 4 give the time (in days) for which the
patient is known to have survived. Columns 2 and 5 indicate whether
the patient died at the time indicated (coded 1), or was last observed
alive and may or may not have died subsequently (coded 0). Columns
3 and 6 give each patient’s age, in years, at the time the dialysis was
started.

APD CAPD

Time (days) Dead Age (years) Time (days) Dead Age (years)

3444 0 41 147 1 55
3499 0 35 422 1 45
6230 0 41 5096 0 46
1324 1 67 3353 0 37
6230 0 29 5415 0 30
709 1 54 551 1 63
6230 0 42 4851 0 44
6230 0 36 4452 0 25
391 1 74 3927 0 52
2790 1 70 4760 0 23

8.2 Estimating a survival curve

At first glance, the way to answer the question just posed is obvious – just
use the methods described in Chapter 6 for analysing data from simple
comparative experiments. But the caption to Table 8.1 explains why this is
not so straightforward. The outcome of interest is the time until a defined
event, death after starting dialysis, takes place. But for some patients, the
event has not yet happened.

Data of this kind are called time-to-event or survival data. Their
characteristic feature is that the event of interest is not always observed
exactly, but may be censored, meaning that we know only that the survival
time is greater than a given value. In other settings, we may know only
that the survival time lies between two given values or, more rarely, that
it is smaller than a given value. The three forms of censoring are called
right-censored, interval-censored and left-censored, respectively. We will
only discuss the analysis of right-censored data, and use the term censored
without qualification to mean right-censored.

The key to analysing censored data is to ask a subtly different question.
Rather than comparing different experimental treatments on the basis of
the average survival times of subjects in each treatment group, we estimate
for each treatment and each possible survival time, t say, the probability
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that a subject will survive for at least a time t. If t is zero, this probability
automatically takes the value 1. As t increases, the survival probability
decreases. In many applications the survival probability must eventually
fall to zero, but this is not always so. For example, if the event of interest
were the age at which a person suffers acute kidney failure, some people
would never experience the event.

A plot of the estimated survival probability against survival time is
called a survival curve. In the absence of censoring, a natural estimate is, for
each t, the proportion of survivors, i.e., subjects who have not experienced
the event of interest by time t. To illustrate, consider the following fictitious
set of uncensored survival times:

0.9 1.3 1.5 3.5 4.9

The five survival times have been ordered from smallest to largest. So, for
any value of t less than 0.9, the proportion of survivors is 1, for t between
0.9 and 1.3 the proportion of survivors is 4/5 = 0.8, for t between 1.3 and
1.5 the proportion is 3/5 = 0.6, and so on. Figure 8.1 shows this estimate,
with the five data points as circles. The survival curve, S(t) say, starts
at S(0) = 1 and is piece-wise constant, decreasing by 1/5 = 0.2 at each
observed survival time.

Now consider a superficially perverse route to the same answer. How
does a subject survive until time 1.4? First they have to survive until
time 0.9. From the data, we estimate this probability to be p1 = 4/5 = 0.8.
Now, having survived until time 0.9, they also have to survive until time
1.4. But of the four remaining subjects at time 0.9, three survive until
time 1.4. So we estimate this second probability to be p2 = 3/4 = 0.75.
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Fig. 8.1. The estimated survival curve from five uncensored survival times.
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In the formal language of probability theory, p1 is an estimate of the
unconditional probability of survival until time 0.9, and p2 is an estimate
of the conditional probability of survival until time 1.3, given survival until
time 0.9. To estimate the unconditional probability of survival until time
1.4, we need to multiply the two estimates, to give

p1 × p2 =
4

5
× 3

4
=

3

5
= 0.6.

Now, consider the same set of numbers as before, except that the second
and fourth survival times are censored at 1.3 and 3.5, which we indicate as

0.9 1.3+ 1.5 3.5+ 4.9

Now we can’t simply estimate survival probabilities by observed propor-
tions because, for example, we don’t know what proportion survived until
time 1.4 – it could be 3/5 or 4/5. But we can use a simple modification of
our perverse method. With the new data, we still estimate the probability of
survival until time 0.9 as p1 = 4/5 = 0.8, because we do still know that the
second survival time is bigger than 0.9. But our estimate of the conditional
probability of survival until time 1.4 given survival until time 0.9 is now
3/3, not 3/4, because we can no longer include the censored observation in
our calculation. So our estimate of the unconditional probability of survival
until time 1.4 becomes

p1 × p2 =
4

5
× 3

3
=

12

15
= 0.8.

This feels a bit like cheating. It’s as if we are pretending that the survival
time censored at 1.3 is actually at least 1.4. But as we continue in this way,
the calculation adjusts itself automatically in a sensible way. For example,
the estimate of the unconditional probability of survival until time 1.6 is

p1 × p2 × p3 =
4

5
× 3

3
× 2

3
= 0.533

because we know that 2 out of 3 patients alive at time 1.3 survived at least
until time 1.6. Quite properly, this estimate lies between the values 0.4 and
0.6 that would hold if the censored survival time 1.3 were known to be less
than 1.6 or greater than 1.6, respectively.

Table 8.2 shows the complete calculation of the survival curve, allowing
for both censored survival times, whilst Figure 8.2 shows the resulting
estimate S(t) as a function of survival time, t.

This method of estimating a survival curve is called the Kaplan–Meier
estimate, after the two statisticians who introduced it, Richard Kaplan and
Paul Meier (Kaplan and Meier, 1958).

We can use the same method to estimate two survival curves from
Dr Drew’s data, one for each of the two versions of dialysis. The complete
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Table 8.2. Calculating the Kaplan–Meier
estimate of a survival curve.

Range of t Value of survival curve

0.0 to 0.9 5
5 = 1

0.9 to 1.3 5
5 × 4

5 = 0.8

1.3 to 1.5 5
5 × 4

5 × 3
3 = 0.8

1.5 to 3.5 5
5 × 4

5 × 3
3 × 2

3 = 0.533

3.5 to 4.9 5
5 × 4

5 × 3
3 × 2

3 × 2
2 = 0.533

4.9 or more 5
5 × 4

5 × 3
3 × 2

3 × 2
2 × 0

1 = 0.0
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Fig. 8.2. The estimated survival curve from three uncensored (circles) and two
censored (crosses) survival times.

dataset includes information from 124 patients, 62 treated with CAPD and
62 with APD. The two Kaplan–Meier estimates for the data are shown in
Figure 8.3. The estimated long term (beyond 5000 days, or approximately
14 years) survival rates are similar for the two methods of dialysis, but
the CAPD group experienced considerably more early deaths; for example,
the estimated five-year survival rates are approximately 0.45 in the CAPD
group and 0.75 in the APD group. Figure 8.3 also shows 95% confidence
limits on each estimate of S(t), which indicate clearly how the precision of
estimation deteriorates as time increases.
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Fig. 8.3. Kaplan–Meier estimates of the survival curve, S(t), for 62 patients
receiving CAPD (left-hand panel) and for 62 patients receiving APD (right-hand
panel). Dashed lines in both panels indicate 95% confidence limits for the estimated
survival curve. Crosses indicate censored data-points.

8.3 How long do you expect to live?

At the time of writing (June 2010), life expectancy in the UK is 82.4
years for a woman, but only 78.5 years for a man. However, if you are
a man reading this book you must already have survived the rigours of
early childhood so, all other things being equal, your life expectancy must
be longer than 78.5 years. If you are a 60-year-old man, your current life
expectancy is in fact 82.3 years. Figure 8.4 explains this pictorially. It shows
a hypothetical distribution of lifetimes, with a vertical line added at age
60. For a 60-year-old, we can rule out the possibility that they die before
reaching the age of 60, so the relevant distribution is all to the right of
the vertical line. To draw a sample from the distribution of lifetimes for
people who have already reached age 60, we would draw a sample from
the distribution shown in Figure 8.4 but discard any values less than 60.
This would yield bigger values (longer lifetimes) on average than would a
sample drawn from the original distribution. In more formal language, the
distribution confined to the right of the vertical line in Figure 8.4 is the
conditional distribution of lifetime, given that lifetime is at least 60.

So what should concern you is not the distribution of lifetime, but
the conditional distribution of lifetime given your current age. Figure 8.5
compares the survival functions, S(t), that correspond to the unconditional
and conditional distributions shown in Figure 8.4. Both, necessarily, start at
the value S(0) = 1, corresponding to certainty, but the conditional survival
function maintains this value until age t = 60, whereas the unconditional
survival function takes values less than 1 for all positive lifetimes.

Now let’s take the argument a step further. If you are a 60-year-old man,
it may comfort you to know that your remaining life expectancy is not 18.5
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Fig. 8.4. A hypothetical distribution of lifetimes. The average value of samples
drawn from this distribution is 78.5 years. The distribution confined to the right of
the vertical line is (proportional to) the conditional distribution of lifetime, given
survival to age 60. The average value of samples drawn from this distribution is
82.3 years.

50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

t (lifetime in years)

S
(t

)

Fig. 8.5. Survival functions for the lifetime distribution shown in Figure 8.4 (solid
line) and for the corresponding conditional distribution given survival to age 60
(dashed line). Note that both functions are plotted only for ages greater than 50.

years, but a massive 22.3 years. But you might be more interested to know
your current risk of death, i.e., if you are 60 years old, how likely is it that
you will die before your 61st birthday? The function that describes your
current risk of death at age t is called the hazard function, usually written
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Fig. 8.6. An increasing hazard function h(t) (left-hand panel) and its correspond-
ing lifetime distribution f(t) (right-hand panel).

as h(t). Figures 8.6, 8.7 and 8.8 show three hypothetical hazard functions
h(t) and the corresponding distributions, f(t) say, of lifetimes. In the first
of these, the hazard (current risk of death) increases with age, which may
be a reasonable assumption for human lifetimes in developed countries.
In the second, the hazard decreases from birth to age 10 and increases
thereafter. This may be a better model for human lifetimes in developing
countries where death in early childhood is more common. In the third
example, the hazard is constant through life. This implies, paradoxically,
that conditional on your surviving to any given age, the distribution of
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Fig. 8.7. A non-monotone hazard function h(t) (left-hand panel) and its corre-
sponding lifetime distribution f(t) (right-hand panel).
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Fig. 8.8. A constant hazard function h(t) (left-hand panel) and its corresponding
lifetime distribution f(t) (right-hand panel).

your remaining lifetime is the same as it was at birth. This actually does
make sense in some contexts. For example, the risk of my being struck
by lightning probably does not depend on my age, provided I remain fit
enough (and perhaps foolish enough) to insist on taking my daily walk
irrespective of the weather. Notice that the relationship between the shape
of the hazard function h(t) and its corresponding lifetime distribution f(t)
is not at all intuitive.

8.4 Regression analysis for survival data: proportional hazards

In Chapter 6 we described methods for investigating the effects of different
experimental treatments on the distribution of a response variable. Our
working assumption was that the effect, if any, of a change in treatment
would be a simple shift in the distribution of the response. When the
response variable is lifetime, this assumption loses much of its appeal. A
more natural way to think about the problem is in terms of risk factors,
as in newspaper headlines of the form ‘new wonder drug reduces risk of
heart disease by 50%’. If true, this is equivalent to a change in the hazard
function from h(t) to 0.5× h(t), for any value of t.

In Chapter 7 we extended the methods of Chapter 6 to investigate
the effects of multiple design variables and/or explanatory variables on a
response, again under the working assumption that their combined effect
was to shift the distribution of the response. In the survival analysis
setting, a more natural assumption is that their combined effect is to
multiply the hazard function by a factor that depends on the values of
the design and explanatory variables. A model of this kind is called a
proportional hazards model. Since its introduction by Sir David Cox (1972),
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the proportional hazards model has become the standard model for survival
analysis, especially in medical settings; the paper won for its author the
1990 Kettering prize for Cancer Research.

To understand the proportional hazards model, it helps to think of a
specific context, such as the data in Table 8.1. We want to understand
how the choice between CAPD and APD, and the patient’s age, affect
their survival prognosis. We first choose a set of standard circumstances,
say a 50-year-old patient being treated with CAPD. Let h0(t), called the
baseline hazard function, be the hazard function for such a patient. Now,
the proportional hazards model assumes that the hazard for a patient being
treated by CAPD, is

h(t) = h0(t) exp{β × (age− 50)},

and for a patient being treated by APD, is

h(t) = h0(t) exp{α+ β × (age− 50)}.

We can combine these into a single expression by defining a design variable
‘method’ that takes the value 0 for CAPD, 1 for APD. Then,

h(t) = h0(t) exp{α×method + β × (age− 50)}. (8.1)

Note that we could also consider the effects of treatment method and age
in two separate models,

h(t) = h0(t) exp{α×method} (8.2)

and

h(t) = h0(t) exp{β × (age− 50)}, (8.3)

respectively. However, for reasons that we will explain in the next section,
there is no reason to suppose that the two approaches will give the same,
or even similar answers.

One reason for the popularity of the proportional hazards model is that
it allows you to investigate the effects of design variables and explanatory
variables without having to specify the form of the baseline hazard function.
In the current example, this means that you can reach a conclusion on
the relative merits of CAPD and APD without having to model h0(t); put
another way, any conclusions you reach about the choice of treatment apply
irrespective of the actual form of h0(t).

8.5 Analysis of the kidney failure data

We now use the proportional hazards model to analyse the kidney failure
data, and explain how to interpret the results of the analysis. As in
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Chapter 7, we will show the output as it is produced by the R software. How-
ever, most software implementations for proportional hazards modelling
will give very similar output, and it should be reasonably straightforward
to adapt the explanation given here to whatever software you are using.
And, as always, you can reproduce the analysis using the data and R code
provided on the book’s website if you wish.

First, we consider whether the suggestion from Figure 8.3 that patients
have a better survival prognosis when treated with APD rather than with
CAPD is backed up by formal inference. To do this, we fit a proportional
hazards model with treatment type as a two-level factor. The relevant part
of the R output is shown below.

n= 124

coef exp(coef) se(coef) z p

method -0.48 0.619 0.25 -1.92 0.055

exp(coef) exp(-coef) lower .95 upper .95

method 0.619 1.62 0.379 1.01

The first line of output confirms that the data cover 124 patients. The next
two lines tell us that the fitted effect (coef, an abbreviation of ‘coefficient’)
of the two-level factor method is −0.48. This is the estimated value of the
parameter α in equation (8.2). The fact that the estimate is negative implies
that the estimated hazard is lower under APD than under CAPD. The next
column, labelled exp(coef), is simply the exponential of coef, with value
0.619. This gives exactly the same information as coef, but in a more easily
interpretable form: the hazard under APD is estimated to be 0.62 times the
hazard under CAPD, i.e., APD conveys a 38% reduction in risk. The last
three columns give us the information we need to test the hypothesis that
there is no difference between the two treatment arms. The test statistic (z)
is the ratio of α̂ to its standard error (se(coef)), and the final column (p)
gives the p-value of the test, which does not quite reach the conventional
5% (0.05) level of significance. Rigid adherence to convention would force us
to declare the analysis inconclusive on the key question of which, if either,
version of peritoneal dialysis has the better survival prognosis. The last two
lines of output repeat the estimated hazard ratio (APD relative to CAPD,
exp(coef)) and, in case you prefer to express the hazard ratio as CAPD
to APD rather than the other way round, its reciprocal (exp(-coef)).
More usefully, the last two columns give the 95% confidence interval for
the hazard ratio (but if you prefer to express these as CAPD to APD, you
have to calculate the reciprocals yourself!).

Clinicians know perfectly well that younger patients are more likely to
survive longer than older patients. Is our comparison of the two treatment
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arms affected if we allow for an age effect? To answer this question we fit
the model (8.1) and obtain the following output.

n= 124

coef exp(coef) se(coef) z p

method -0.9908 0.371 0.26418 -3.75 1.8e-04

age 0.0566 1.058 0.00838 6.76 1.4e-11

exp(coef) exp(-coef) lower .95 upper .95

method 0.371 2.693 0.221 0.623

age 1.058 0.945 1.041 1.076

The format of the output is essentially the same as before, except that
now we are given information about the estimated effects of both treat-
ment (method) and age. Now, the confidence interval for the hazard ratio
(exp(coef)) between APD and CAPD comfortably excludes the neutral
value one. This gives a strong indication that patients of the same age
have a better survival prognosis under APD than under CAPD. Also, the
confidence interval for the age effect indicates that, with 95% confidence,
the effect of each extra year of age is to increase the hazard by a factor of
between 1.041 and 1.076 (4.1 to 7.6%).

Why did the two sets of results differ with respect to the comparison
between APD and CAPD? One explanation for the discrepancy is that
there are fewer young patients in the APD arm than in the CAPD arm.
This would have been very unlikely had the data arisen from a randomized
trial. But they were collected in routine clinical practice, and it may have
been that the younger patients were more likely to be treated by CAPD,
for example because it was thought to be better suited to their lifestyle.
In this case, a comparison that fails to take account of the age effect is,
arguably, unfair to APD.

A variable in a dataset whose effect is not of direct interest, but which is
statistically related to one that is of direct interest, is called a confounder.
Whenever possible, an analysis of such data should adjust for the effect
of the confounder before reaching any conclusions regarding the variable
of direct interest. This raises the uncomfortable possibility that there may
be unmeasured confounders for which, by definition, we can make no such
adjustment. This is one reason why the randomized trial is considered to
be a gold standard, and why some statisticians are sceptical of any findings
drawn from observational studies. Our view is that the latter position is far
too harsh. Certainly, findings from observational studies should be treated
cautiously, but if their preliminary findings are backed up by subsequent
studies, and more importantly by a scientific explanation, they become
robust. Nobody ever has, or ever will, conduct a randomized trial of the
relationship between smoking and the risk of lung cancer.
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8.6 Discussion and further reading

The proportional hazards model is probably the most widely used approach
to analysing survival data, but it is not the only option. Another popular
model is the accelerated life model. Here, the key assumption is that the
combined effect of design variables and explanatory variables is to change
the speed of the biological clock. So, for example, in the context of our
renal data, if the survival function for a 50-year-old patient being treated
with CAPD is S(t), the accelerated life model would assume that the
survival function for a 50-year-old on APD takes the form S(βt), where
the parameter β measures the acceleration (or deceleration if β < 1) effect
of APD by comparison with CAPD.

A third option is to deal with the fact that lifetimes are necessarily
positive by transforming the data, for example to logarithms of survival
times, and using the methods described in Chapters 6 and 7. This provides
a particularly simple approach in the absence of censoring.

For readers who would like to know more about survival analysis, good
introductory accounts include Collett (2003) or Cox and Oakes (1984).
More advanced texts include Kalbfleisch and Prentice (2002) and Lawless
(2003).

For a brief account of how the steady accumulation of evidence from
observational studies established the link between smoking and lung cancer,
see Chapter 19 of Anderson (1989).
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Time series analysis: predicting
fluctuations in daily
maximum temperatures

9.1 Weather forecasting

Figure 9.1 shows the daily maximum temperatures recorded at the Hazel-
rigg research station, near Lancaster, over a one-year period from 1
September 1995 to 31 August 1996. The plot shows some predictable
features: strong seasonal variation, together with relatively small day-
to-day fluctuations about the prevailing seasonal pattern. The seasonal
pattern is a reflection of the climate in this part of the world, whilst the
fluctuations reflect changes in the weather. Another way to express this
distinction is that the seasonal pattern is an example of deterministic or
systematic variation, whilst the day-to-day fluctuations are stochastic, or
random (climate is what you expect, weather is what you get). How can we
use data of the kind shown in Figure 9.1 to make temperature forecasts?

9.2 Why do time series data need special treatment?

We denote an observed time series by yt : t = 1, . . . , n, where n is the
length of the series and yt denotes the value of the series recorded in time
unit t. In our motivating example, n = 365, the time unit is one day, t = 1
corresponds to 1 September 1995 and each yt is a temperature in degrees
Celsius.

A common feature of all of the statistical methods that we have dis-
cussed so far is that they assume independent replication between exper-
imental units. In a designed experiment, and as discussed in Chapter 5,
careful attention to experimental technique can make the independence
assumption reasonable. When dealing with time series data, independence
between observations on successive time units cannot be assumed, and in
practice often does not hold. In our motivating example, we might expect
periods of several successive warmer-than-average days to be followed by a
run of cooler-than-average days.
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Fig. 9.1. Daily maximum temperatures, in degrees Celsius, recorded at Hazelrigg
field station from 1 September 1995 to 31 August 1996.

A consequence of the lack of independence between the values of yt
is that methods based on the assumption of independent replication are
invalid. For example, the usual formula (6.1) for the standard error of a
mean can be wrong by a factor that could be as large as the square root
of the sample size, n. To avoid reaching incorrect conclusions from time
series data, special methods are needed that can make allowance for weak
or strong dependence as appropriate.

9.3 Trend and seasonal variation

To understand the behaviour of the processes that generate an observed
time series, we need to decompose the variation in the data into two or
more components. The simplest such decomposition is into deterministic
and stochastic variation. Both trend and seasonality refer to aspects of the
deterministic component.

The trend in a time series is its average value as a function of time.
Strictly, this assumes that, at least in principle, the process that generated
the observed time series can be replicated. For experimentally generated
time series, such replication is feasible in practice, and in these circum-
stances the easiest way to think about the trend is that it represents what
a series of averages of observed values at each time point would look like if
the experiment were repeated indefinitely under identical conditions. For
observational series like the Hazelrigg temperature data, this is not physi-
cally possible: there will never be another 1 September 1995. Nevertheless,
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if we are prepared to imagine a set of parallel universes in which the same
laws of nature prevail, we might be prepared to predict that in every one
of them summer will tend to be warmer than winter, but not to predict
the precise temperature on a given date.

The authors’ view of seasonality is that it forms part of the trend,
specifically that part, if any, that is reproduced cyclically over time. For our
temperature data, the seasonality in the data coincides with the everyday
use of the word, but in other contexts the length, or period of a cycle may
take some other value, for example a 24-hour cycle in hourly temperature
readings.

Once we have removed the deterministic component of variation from
a time series, we assume that the remaining variation can be explained by
appealing to the laws of probability. The term stochastic means ‘governed
by the laws of probability’. The simplest possible model of the stochastic
component of variation in a time series is the so-called white noise model,
consisting of a sequence of independent random fluctuations about the
underlying trend. Very often this model fails adequately to describe the
data, but it provides a starting point for building more flexible and realistic
models.

The astute reader will have spotted that our brief appeal to the idea
of parallel universes to justify stochastic modelling of observational time
series data lacks rigour. Strictly, if we cannot replicate the natural process
we wish to study, so that we can only observe a single time series, there is no
absolute criterion through which we can disentangle the deterministic and
stochastic components of variation in the series. Instead, we have to make
more or less subjective judgements, ideally informed by scientific knowledge
of the natural processes that generate the data, about what aspects of the
data we should model as if they were stochastic.

By way of illustration, Figure 9.2 shows a time series of weekly black
smoke pollution levels (concentration in air, in parts per million) in the city
of Newcastle upon Tyne, over the ten-year period 1970 to 1979 inclusive.
The data show a clear, and unsurprising, seasonal pattern in the everyday
sense, with higher pollution levels in winter than in summer, and a long-
term decreasing trend as a direct result of the steady decline in domestic
coal-burning during the 1970s. However, the magnitude of the seasonal
variation, and the time of year at which pollution is highest, vary from
year to year. Again, the scientific context makes this unsurprising: black
smoke results in part from the burning of coal for domestic heating, which
at the time these data were recorded was widespread in the city. Pollution
levels therefore reflect changes in temperature and, as we all know from
experience, not all winters are equally cold and the coldest time of the year
does not always fall on the same date. The model fitted to the data, which is
shown in Figure 9.2 as a smooth, dashed curve, captures this behaviour by
including a cosine wave with an annual period, A cos(2πt/52 + P ), where
t is time in weeks, A is the amplitude and P the phase of the seasonal
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Fig. 9.2. Weekly black smoke levels (ppm) in the city of Newcastle upon Tyne
(black line) and a fitted stochastic model for the underlying trend (dashed line).

variation. Crucially, the model also allows the values of A and P to fluctuate
stochastically over time. A detailed description of these data and the fitted
model can be found in Fanshawe et al. (2008).

9.4 Autocorrelation: what is it and why does it matter?

In Chapter 4, we introduced the idea of correlation as a numerical measure
of the strength of linear association between pairs of measurements. One
way to construct pairs of measurements from a time series is to consider
a time separation, or lag, of k time units and define pairs (yt, yt−k) :
t = k + 1, . . . , n. The correlation between such pairs is called the lag-k
autocorrelation of the series.

Figure 9.3 shows a set of scatterplots of the lagged pairs (yt, yt−k) of
Hazelrigg temperatures, for k = 1, 2, 3, 4. All four panels show a very strong,
positive association. This is neither surprising nor particularly interesting.
It only confirms that temperature varies systematically over the year, hence
pairs of temperatures separated by only a few days will be relatively similar,
i.e., positively associated, simply by virtue of their closeness in time. Hence,
our first observation about autocorrelation analysis is that it is of little or
no value unless any deterministic trend in the data has been identified and
removed.

A potentially interesting question is not whether the temperature series
itself shows evidence of autocorrelation, but whether the time series, zt say,
of fluctuations about the seasonal trend are autocorrelated. Figure 9.4 gives
a positive answer. To produce this diagram, we fitted the linear model
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Fig. 9.3. Scatterplots of lagged pairs of daily maximum temperatures, in degrees
Celsius, recorded at Hazelrigg field station from 1 September 1995 to 31 August
1996. Time lags are 1, 2, 3 and 4 days (top-left, top-right, bottom-left and bottom-
right panels, respectively).

Yt = α+ βx1t + γx2t + Zt,

where x1t = cos(2π/366) and x2t = sin(2π/366), and calculated an estimate
of each zt as the corresponding observed temperature, yt, minus the fitted
seasonal trend on day t, hence

ẑt = yt − α̂− β̂x1t − γ̂x2t

as described in Sections 7.5 and 7.6. See also Section 9.5 below. Notice
also that the autocorrelation in the estimates residual series ẑt is weaker
at longer lags.

A useful device to summarize the pattern of autocorrelation in a time
series is a plot of the lag-k autocorrelation, rk, against k. Such a plot is
called a correlogram. Conventionally, the rk are calculated after subtracting
the sample mean, ȳ = (

∑n
t=1 yt)/n, from each yt. Hence,
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Fig. 9.4. Scatterplots of lagged pairs of daily maximum temperature residuals.
Time lags are 1, 2, 3 days (top row, left to right) and 7, 14 and 28 days (bottom
row, left to right).

rk = gk/g0, (9.1)

where, for each value of k ≥ 0,

gk =
n∑

t=k+1

(yt − ȳ)(yt−k − ȳ). (9.2)

As already noted, the correlogram should only be calculated after any
trend in the time series has been removed. Figure 9.5 shows correlograms of
the Hazelrigg temperature series before and after trend removal using the
simple sine–cosine wave model for the trend. The correlogram of the raw
data series is distorted by the underlying trend, which induces a positive
correlation at all of the plotted lags. This is not wrong on its own terms,
but it tells us nothing new: a similar effect would be observed in the
correlogram of any time series with a smooth time trend. The correlogram
of the residual series is more interesting, because it indicates that the series
of temperature fluctuations about the trend is positively autocorrelated,
and that the magnitude of this autocorrelation appears to decay smoothly
towards zero with increasing lag. This reflects a well-known feature of the
UK climate, namely that relatively warm or cool spells tend to persist over
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Fig. 9.5. Correlograms of maximum daily temperatures (left-hand panel) and of
residuals (right-hand panel). Dashed horizontal lines are set at values ±2/

√
365.

several days, but rarely over several weeks. In Section 9.5 we will show how
we can exploit this in order to make weather forecasts.

The dashed horizontal lines on the correlograms shown in Figure 9.5
are set at values ±2/

√
n. These represent approximate 95% point-wise

tolerance limits under the assumption that the process generating the
data is a sequence of independent fluctuations about a constant mean. An
immediate conclusion from the right-hand panel of Figure 9.5 is that the
autocorrelations of the residuals at small lags k are statistically significant
(from zero, at the conventional 5% level). More interestingly, the smooth
decay pattern in the residual autocorrelations with increasing lag suggests
that it should be possible to build a descriptive model for the complete
set of autocorrelations, rk, rather than to regard them as taking arbitrarily
different values. The nominally significant, but small, negative autocorrela-
tions at large lags are likely to be artificial; recall that the tolerance limits
are computed on the assumption that all of the true autocorrelations are
zero, and should therefore not be used to test significance at large lags after
significance at small lags has been detected.

9.5 Prediction

A common goal in time series analysis is to predict the future. How can we
use the Hazelrigg temperature data to forecast tomorrow’s, or next week’s,
or next month’s temperature?
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Let’s first consider long-term weather forecasting. If we want to predict
the temperature one month ahead, knowing whether today is relatively
warm or cold for the time of year is not very helpful; probably the best we
can do is predict that the temperature next month will be at its seasonal
average (of course, professional meteorologists can do better than this by
examining much more extensive national and global data than we have at
our disposal).

In contrast, if today is warmer than average for the time of year, most
of us would predict that tomorrow will also be warmer than average, and
conversely. The intermediate problem of predicting next week’s tempera-
ture is trickier. Is one week ahead a short-term or a long-term prediction?
Clearly, it lies somewhere between the two, but where exactly? This is
where autocorrelation can help us. For a prediction of the temperature
k days ahead, the stronger the lag k autocorrelation, the more we would
expect today’s stochastic variation about the seasonal average to persist k
days ahead of today. Put more formally, if we are given today’s temperature,
the uncertainty in predicting temperature k days ahead, expressed as the
variance of the prediction, is reduced by a factor of 1− r2k.

To put this into practice, we need to build a model for the Hazel-
rigg data. For the deterministic component, we use a cosine wave,
α cos(2πt/366 + φ). This differs from the model for the black smoke data in
two ways. Firstly, because the data are recorded daily rather than weekly,
366 replaces 52 so as to preserve the required annual cycle (note that 1996
was a leap year). Secondly, because we only have one year’s data, the
amplitude and phase are treated as fixed parameters rather than as sto-
chastically varying over time. Fitting the model turns out to be easier if we
assume, temporarily, that the fluctuations about the seasonal trend are a
white noise series Zt, i.e., values of Zt on different days t are independent
(this assumption is palpably false, but bear with us). We write Yt for the
temperature on day t and μ for the year-long average temperature. Also,
by using the trigonometric identity that cos(A+B) = cos(A) cos(B)−
sin(A) sin(B), we can re-express our provisional model for the data as

Yt = μ+ β1 cos(2πt/366) + β2 sin(2πt/366). (9.3)

The new parameters, β1 and β2, in (9.3) relate to the amplitude, α, and
phase, φ, as follows:

α =
√
(β2

1 + β2
2), (9.4)

φ = tan−1(−β2/β1). (9.5)

The advantage of the re-expression (9.3) is that the values x1 =
cos(2πt/366) and x2 sin(2πt/366) do not depend on any unknown quan-
tities, hence (9.3) is a disguised linear regression model,

Yt = μ+ β1x1 + β2x2 + Zt (9.6)
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Fig. 9.6. Daily maximum temperatures, in degrees Celsius, recorded at Hazelrigg
field station from 1 September 1995 to 31 August 1996 (solid line) and fitted
harmonic regression model (dashed line).

of the kind discussed in Chapter 7 and the parameters μ, β1 and β2 can be
estimated using standard regression software.

We used the methods described in Sections 7.5 and 7.6 to fit the model,
obtaining estimates μ̂ = 11.83, β̂1 = 6.27 and β̂2 = −3.27. The correspond-
ing values of the physically more natural quantities of amplitude and phase
are α̂ = 7.07 and φ̂ = 0.48 radians. Figure 9.6 shows the data with the fitted
model. The fitted curve captures the seasonal pattern quite well. A more
subtle question is whether the daily fluctuations about the curve agree with
the white noise assumption for Zt in (9.6). As we know already, the cor-

relogram of the residuals, ẑt = yt − μ̂− β̂1 cos(2πt/366)− β̂2 sin(2πt/366),
clearly suggests not.

A simple way to model the autocorrelation in these data is to think of
tomorrow’s fluctuation about the seasonal trend as a compromise between
today’s fluctuation and an independent stochastic perturbation. Expressed
formally, we now assume that the fluctuations Zt follow the model

Zt = ρZt−1 + εt, (9.7)

where ρ represents the correlation between Zt and Zt−1, and must therefore
take a value between −1 and +1, and ε is a white noise sequence. As
with the model for the seasonal trend, we can re-express (9.7) as a linear
regression model by defining, for each day t, the response to be today’s
temperature residual and the explanatory variable to be yesterday’s tem-
perature residual. To fit the model, we then constrain the intercept of the
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Fig. 9.7. Observed (solid line) and fitted (dashed line) autocorrelation functions
for time series of maximum daily temperatures.

linear fit to be zero. This gives the estimate ρ̂ = 0.684. Figure 9.7 compares
the fitted and observed correlograms. The model captures the general shape
of the autocorrelation function well. The negative observed autocorrelations
at large lags are incompatible with the model, even allowing for sampling
variation as expressed by the horizontal dashed lines set at plus and
minus 2/

√
366 on Figure 9.7. A partial explanation is that the plus and

minus 2/
√
366 limits provide only approximate guidelines that are less

reliable at large than at small lags, and strictly only applicable to assessing
departures from a completely uncorrelated series. The sine–cosine model
for the seasonal trend is also likely to be no more than an approximation.
A cautious conclusion would be that the model gives a reasonably good, if
imperfect, fit to the observed pattern of autocorrelation in the data.

Now, suppose that on day t we want to predict the temperature k days
ahead. The prediction proceeds in stages as follows. Firstly, we compute
the estimated average temperature on each day of the year,

μ̂t + β̂1 cos(2πt/365) + β̂2 sin(2πt/365).

Secondly, we compute the corresponding residuals,

ẑt = yt − μ̂t.

The sequence ẑt only gives an approximation to the correct values of Zt

because we have ignored the uncertainty in our estimation of μt, but it is
close enough for our purposes. Next, we repeatedly use (9.7) as follows.
Since equation (9.7) holds for any time t, we can write
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Zt+2 = ρZt+1 + εt+2

= ρ(ρZt + εt+1) + εt+2

= ρ2Zt + ρεt+1 + εt+2. (9.8)

Now, because both εt+2 and εt+1 have mean zero and are independent
of Zt, the data are of no help to us in predicting whether their actual
values will be positive or negative, and a sensible procedure is to predict
them as zeros. Then, (9.8) implies that a sensible predictor for Zt+2 at
time t is ρ2Zt. Applying this argument a second time shows that a sensible
predictor of Zt+3 at time t is ρ3Zt, and so on. This gives us the general rule
that, to predict temperature k days ahead, we add the estimated average
temperature and the predicted fluctuation about the average, hence

Ŷt+k = μ̂t+k + ρk(Yt − μ̂t). (9.9)

To apply this rule to the Hazelrigg data, we need to estimate the parameter
ρ. Recall that ρ represents the correlation between successive fluctuations
Zt. Hence, our estimate for ρ is the lag-1 autocorrelation of the residual
series, as shown in Figure 9.5, namely ρ̂ = 0.683.

How well does this prediction rule work in practice? In particular, how
much, if at all, better is it than other, simpler rules? Ideally, prediction
algorithms should be evaluated on data other than those used to fit the
associated statistical models. Here, in the absence of any additional data,
we compare three prediction rules by applying them retrospectively to the
Hazelrigg data. The rules are:

(1) Ŷt+k = μ̂t+k + ρ̂k(Yt − μ̂t) (model-based)

(2) Ŷt+k = μ̂t+k (deterministic)

(3) Ŷt+k = Yt (random walk)

A statistician would expect rule 1 to perform best, because it is derived
from a model that has been shown to fit the data well. Rule 2 is labelled
‘deterministic’ because it uses only our best estimate of the systematic
component of the data and ignores the effect of stochastic fluctuations. Rule
3 says that the future will be very like the present, which for small values of
k may not be a bad approximation to the truth. From a statistical modelling
perspective, it would be optimal if the underlying process followed a random
walk, defined as Yt+1 = Yt + Zt, where Zt is white noise. In fact, this very
simple model works surprisingly well in many settings.

To compare the three rules, we use the following mean square error
criterion. Suppose that at time t we wish to predict the value, yt+k, of the
temperature k days later. A prediction rule gives the predicted value ŷt+k.
Then, the mean square error of the rule is
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Table 9.1. Mean square error, MSE, evaluated
for each of three prediction rules and for forecast
lead times k = 1, 2, 3, 7, 14, 28. See text for defini-
tion of rules 1, 2 and 3.

Rule Forecast lead time (days)

1 2 3 7 14 28

1 4.03 5.96 6.73 7.49 7.75 7.86
2 7.56 7.57 7.58 7.60 7.73 7.86
3 4.78 8.15 10.07 13.20 17.86 16.44

MSE =

{
n−k∑

t=1

(yt+k − ŷt+k)
2

}

/(n− k).

Table 9.1 tabulates the values of MSE for each of the three rules, and for
each of the forecast lead times k = 1, 2, 3, 7, 14, 28. As expected, rule 1 gives
the best performance overall. Rule 2 performs relatively poorly at small lead
times k, but at large lead times performs essentially as well as rule 1. The
explanation for this is that rule 1 differs from rule 2 by taking account
of the lag-k autocorrelation in the data, whereas rule 2 assumes implicitly
that this autocorrelation is zero, which is not a bad approximation for large
values of k. The fitted autocorrelation used by rule 1 is rk = 0.683k. Hence,
r1 = 0.683, r2 = 0.466, r3 = 0.318 and so on until r28 = 0.000023 ≈ 0. Rule
3 outperforms rule 2 at lag k = 1 and has comparable performance at lag
k = 2, but its performance deteriorates thereafter, because it uses a model
which assumes, incorrectly, that the strong autocorrelation at small lags
persists to large lags.

9.6 Discussion and further reading

Time series analysis is one of the more specialized branches of statistics.
Introductory books include Chatfield (1996) and Diggle (1990).

More advanced statistical methods for time series data than those
covered here have much in common with signal processing methods used in
physics and electrical engineering. Two examples are spectral analysis and
Kalman filtering.

The central idea in spectral analysis is to represent a time series as
a superposition of sine–cosine waves at different frequencies. This is a
physically natural approach for many electrical series, but also has an
empirical justification in that any series of length n can be approximated
arbitrarily closely by at most n/2 sine–cosine waves and often in practice
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Fig. 9.8. A simulated time series (solid line) and an approximation to it (dashed
line) obtained by the superposition of two sine–cosine waves (dashed line).
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Fig. 9.9. The same simulated time series as in Figure 9.8 (solid line) and an
approximation to it (dashed line) obtained by the superposition of four sine–cosine
waves.

by many fewer. As an example, Figures 9.8, 9.9 and 9.10 show a time series
of length n = 250 and successive approximations to it, each of which is
the sum of r sine–cosine waves, where r = 2, 4 and 8, respectively. The first
approximation is very poor. The second does a slightly better job, whilst
the third succeeds in capturing the main features of the variation in the
observed time series.

The Kalman filter derives its name from the pioneering work of R. E.
Kalman (Kalman, 1960; Kalman and Bucy, 1961). The key idea is to
represent a time series as the sum of a signal, which we wish to detect, and
noise, which is hiding the signal from us. The Kalman filter is an algorithm
for finding the best estimate of the underlying signal in real time, i.e., the
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Fig. 9.10. The same simulated time series as in Figure 9.8 (solid line) and an
approximation to it (dashed line) obtained by the superposition of eight sine–cosine
waves.

estimate of the signal is updated efficiently whenever a new observation
becomes available. For an introductory account, see for example Meinhold
and Singpurwalla (1983). In Figure 9.2, the smooth curve showing the trend
and seasonal variation in black smoke concentrations was estimated using
the Kalman filter.
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Spatial statistics:
monitoring air pollution

10.1 Air pollution

Figure 10.1 is a day-time view of central London in December 1952 during a
smog (an amalgam of ‘smoke’ and ‘fog’). Conditions like this were a feature
of the UK’s winter urban environment at the time. They were caused by
an unhappy combination of weather conditions and pollution from coal-
burning and traffic fumes, and were somewhat affectionately known as ‘pea
soupers’. But the exceptionally severe smog of winter 1952–1953 led to
a dramatic increase in the death rate, demonstrating what is now well
known – that polluted air can have serious adverse effects on human health.
Consequently, throughout the developed world air quality is now monitored
to enable corrective measures to be implemented if the concentrations of
any of a range of pollutants in the air exceed agreed, and regulated, safe
levels.

The most obvious way to measure air quality is by physical and chemical
analysis of directly sampled air. However, this is an expensive process and
as a result monitoring networks tend to be spatially sparse. An example
is shown in Figure 10.2, taken from Fanshawe et al. (2008). That paper
reports a study of black smoke pollution (solid air-suspended particles with
diameter of at most 4μm) in and near the city of Newcastle upon Tyne at
various times over the period 1962 to 1992. Although Figure 10.2 shows 25
monitor locations, not all were in operation at any one time, and by the
end of the study period only three remained active.

This has led scientists to consider other, less direct but perhaps more
cost-effective, technologies for monitoring pollution, including biomonitor-
ing. The idea of this is that instead of measuring the concentrations of
particular pollutants directly in sampled air, we can exploit the ability of
plants to take up pollutants, whose concentrations can then be determined
by chemical analysis of plant tissue. Figure 10.3 shows data from a bio-
monitoring study of this kind. The positions of the circles on the map
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Fig. 10.1. Central London during a severe smog.

12

3

4

5

6

7

8 9

10

11

12

13

1415

1617
18

19
20

21 22

23
24

25

5 km

N

Fig. 10.2. Locations of black smoke monitoring stations in the city of Newcastle
upon Tyne. Individual monitors were active over various time periods between 1961
and 1992. Monitors 21 to 25 were located just outside the current city boundary.
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denote a set of 63 locations in Galicia, northwestern Spain, at which
samples of a particular species of moss were taken. The radius of each
circle is proportional to the corresponding value of the lead concentration
determined by chemical analysis of the sample.

Galicia is bounded by the neighbouring province of Asturias to the
east, by the river Minho on the border with Portugal to the south, and by
the Atlantic Ocean to the west and north. More detailed information on
the data collection and scientific context are given in Fernández, Rey and
Carballeira (2000). Figure 10.3 gives a strong suggestion of spatial variation
in lead concentrations that could not easily be described by simple north–
south or east–west trends. The biomonitoring technology has allowed data
to be collected from many more locations than would have been feasible
using direct air sampling devices. A primary goal in analysing these data
is to construct a Galicia-wide map of pollutant concentrations to inform
environmental planning and regulation. This requires us to use the data
at the sampled locations to predict pollutant concentrations at unsampled
locations.

In Chapter 9 we used the term predict to mean making an educated
guess of the future value of some phenomenon of interest. Here, we use
the term in a more general sense, to mean making an educated guess
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Fig. 10.3. Galicia lead pollution data. Each circle has its centre at the sampling
location and its radius proportional to the measured lead concentration. An approx-
imation to the boundary of Galicia is shown to set the data in context, but otherwise
plays no part in the analysis of the data.
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of the value of any unobserved quantity of interest, without necessarily
any connotations of time. In other words, a forecast is a prediction but a
prediction may or may not be a forecast.

10.2 Spatial variation

One way to describe the spatial variation in a set of data is to look for
spatially referenced explanatory variables and apply the ideas in Chapter 7
to build a suitable regression model. When explanatory variables are not
available, or do not adequately explain the observed spatial variation, we
adopt a statistical analogue of what is sometimes called the ‘first law
of geography’, which is that close things tend to be similar. Expressed
in statistical language, this ‘law’ states that measured values from near-
neighbouring locations will tend to be positively correlated, and that the
correlation weakens with increasing separation distance. This principle is
at the heart of a methodology for spatial interpolation and smoothing
called geostatistics; the name is an acknowledgement that the methodology
was originally developed in the mining industry to enable prediction of a
proposed mine’s potential yield, based on the results from exploratory ore
samples.

10.3 Exploring spatial variation: the spatial correlogram

Suppose that we have measured values Yi at spatial locations xi : i =
1, . . . , n. We wish to explore how the correlation between a pair of measured
values depends on the distance between their corresponding locations, and
perhaps on their orientation.

If the locations form a regular lattice, we can do this by a straight-
forward extension of the correlogram for a time series, as discussed in
Chapter 9. Suppose, for illustration, that the locations form a unit square
lattice. Then, for any spatial lag, (r, s) say, we can calculate the correlation
between the measured values on the original lattice and on a superimposed
copy that has been shifted by r and s units in the horizontal and vertical
directions, respectively. This is shown in Figure 10.4, where r = 3 and s = 5.
The collection of correlations obtained in this way over a range of values
of r and s is called the spatial correlogram.

The data from the wheat uniformity trial that we discussed in Chapter 5
are an example of lattice data. Figure 10.5 shows the spatial correlogram
of these data, calculated at spatial separations up to 10 plots in each
coordinate direction. The plot gives an impression of a series of parallel
ridges of relatively high positive correlations (lighter shades of grey). This
suggests a quasi-cyclic pattern of variation, which is thought to be a
residual effect of ancient ridge-and-furrow ploughing of the field; for further
discussion, see McBratney and Webster (1981). Note that for any values
of r and s, the correlations at spatial lags (r, s) and (−r,−s) are identical,
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Fig. 10.4. Calculating the spatial correlogram at spatial lags r = 3 and s = 5.
The correlation is calculated from corresponding pairs of measured values on the
original and shifted lattices; three such pairs are indicated by the dashed lines.
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Fig. 10.5. The spatial correlogram of the wheat uniformity trial data at spatial
lags up to 10 in each coordinate direction
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and that the correlation at spatial lag (0, 0) is necessarily equal to 1, and
is plotted as a white square on Figure 10.5.

If a spatial correlogram does not suggest any directional effects such
as are apparent in the wheat uniformity trial data, a useful simplification
is to compute correlations between pairs of values at locations separated
by a given distance, irrespective of their orientation. To do this for the
wheat uniformity data would be misleading, as it would hide a potentially
important directional aspect of the spatial variation in wheat yields.

10.4 Exploring spatial variation: the variogram

An intuitive way to think about spatial correlation is the following. In a
set of data with positive spatial correlation at spatial separations r and
s in the two coordinate directions, pairs of measurements separated by r
and s will, on average, be closer to each other in value than would a pair
of randomly sampled measurements. A way of expressing this numerically
is to calculate squared differences between all pairs of measured values
in the data, and average these squared differences at each pair of spatial
separations. A plot of average squared differences against spatial separa-
tions is called the variogram of the data. Conventionally, the variogram
is defined as one half of the average squared difference at each spatial
separation (which, surprisingly enough, leads some authors to call it the
semi-variogram!).
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Fig. 10.6. The variogram of the wheat uniformity trial data at spatial lags up to
10 in each coordinate direction.
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Figure 10.6 shows the variogram of the wheat uniformity trial data,
scaled by dividing each value by the sample variance of the data. This
plot is essentially an inverted version of the spatial correlogram, i.e., the
variogram takes large values when the correlogram takes small values and
vice versa, so that the ridges now show up as darker, rather than lighter,
shades of grey. It was precisely to emphasize this relationship that we scaled
the variogram; the scaling does not affect the shape of the plot, and is
usually omitted.

So why bother with the variogram? For analysing lattice data, it adds
nothing to the spatial correlogram. But for irregularly spaced data such as
the Galicia lead pollution data, it is not obvious how we would begin to
calculate a spatial correlogram, whereas we can easily calculate the squared
differences between pairs of measurements and investigate how these do or
do not relate to spatial separation.

10.5 A case-study in spatial prediction: mapping lead
pollution in Galicia

10.5.1 Galicia lead pollution data

We now use the data represented schematically in Figure 10.3 to show how
the ideas in Section 10.4 can be extended to deal with an irregular spatial
distribution of sampling locations, and how the results can then be used to
produce a pollution map for the whole of Galicia.

10.5.2 Calculating the variogram

To handle spatial data collected at an arbitrary set of locations, it is helpful
first to establish a little more notation.

Each data point constitutes a set of three numbers, (x, y, z), where x and
y define a location and z is the corresponding measured value. We write
the complete set of data as (xi, yi, zi) : i = 1, . . . , n. For the Galicia lead
pollution data, n = 63. Now, for any pair of data-points i and j, define
dxij = xi − xj , dyij = yi − yj and vij =

1
2 (zi − zj)

2. A three-dimensional
plot of the points (dxij , dyij , vij) is called a variogram cloud. Figure 10.8
illustrates this for an artificially small synthetic dataset consisting of
n = 16 measurements. Note that for any pair i and j, vji = vij , so the
figure necessarily shows mirror symmetry about each axis. The right-hand
panel of Figure 10.8 shows a clear directional effect, with the larger values
of vij concentrated around the southwest to northeast axis and, along this
axis, a distance effect with larger values of vij towards the two corners.
For realistically large datasets, the variogram cloud becomes very cluttered
and difficult to interpret. The usual practice is then to ‘bin’ the cloud by
dividing the (x, y)-space into square cells, or bins, and to calculate the
average of the vij corresponding to the pairs (dx, dy) falling into each bin.
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In our synthetic example, a possible set of bins is indicated by the dashed
grid lines.

When the binned variogram cloud does not show evidence of directional
effects, its definition and the associated calculations can be simplified by
reducing each pair (dxij , dyij) to a distance, uij =

√
(dx2

ij + dy2ij). Then,
the cloud becomes a two-dimensional scatterplot of the points (uij , vij)
and binning reduces to averaging the vij corresponding to each of a set
of distance intervals. Any directional effects are necessarily hidden by the
averaging of results from all pairs of measurements separated by the same
distance, irrespective of their orientation. However, when this averaging is
appropriate the result is usually easier to interpret. Figure 10.7 shows an
example, using the same synthetic data as for Figure 10.8.

Figure 10.9 shows the binned directional variogram of the Galicia lead
pollution data. As in our earlier discussion of the wheat uniformity trial
data, Figure 10.9 exploits the variogram’s inherent mirror symmetry by
including only positive lags v but both positive and negative lags u. The
diagram shows no obvious directional effect of the kind that we saw in the
wheat uniformity trial data.

Figure 10.10 shows the isotropic variogram of the Galicia lead pollution
data. This reveals a clear distance effect whereby the variogram increases,
i.e., spatial correlation becomes weaker, with increasing separation dis-
tance.

10.5.3 Mapping the Galicia lead pollution data

We now consider how the behaviour of the variogram, as estimated by
Figure 10.10, can suggest how we might best use the data to construct a
map of the underlying pollution surface.
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Fig. 10.7. A synthetic set of n = 16 measurements and their directional variogram
cloud.
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Fig. 10.9. Directional variogram of the Galicia lead pollution data.
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Fig. 10.10. Isotropic variogram of the Galicia lead pollution data.

Firstly, what value would we predict for the lead concentration at
one of the n = 63 sampled locations? At first sight, the answer seems
obvious – haven’t we already measured this quantity? But remember that
we measured the lead concentration in a sample of moss gathered at the
location in question. Would a second sample have given the same answer?
Presumably not. But if it would have given a different answer, then how
different? The variogram gives us a clue. Remember that the plotted points
in the variogram are averages of (half) squared differences between lead
concentrations at (approximately) a given separation distance. As already
noted, the overall impression conveyed by Figure 10.10 is that this average
is a fairly smooth curve that increases with increasing distance. If we
imagine this curve being extrapolated back towards zero distance, where
do we think it would cut the y-axis? Figure 10.11 shows what you might
accept as two reasonable extrapolations. One of these would imply that
the variogram approaches zero as the separation distance approaches zero,
the other would not. If we prefer the former extrapolation, we would have
to conclude that the observed value of lead concentration at each of the
63 sampled locations gives the best possible prediction of the underlying
concentration at that location – indeed, it is the underlying concentration.
If, on the other hand, we prefer the second extrapolation, then we might
do better by predicting the underlying concentration at a sampled location
as a weighted average of measured values at nearby sample locations. The
justification for this lies in the fact that the variogram increases in value
with increasing separation distance. This implies that the values from close
locations are similar, and hence that an average of several might give a
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Fig. 10.11. Isotropic variogram of the Galicia lead pollution data with two fitted
curves extrapolated to zero distance.

more precise prediction, i.e., one with smaller variance, without introducing
much bias. In the authors’ opinion, resolving this ambiguity usually needs
more than empirical statistical evidence – it needs scientific knowledge.
Note, for example, that in the specific context of the Galicia lead pollution
data, the reproducibility of measured concentrations at any one location
depends on two considerations: how precise is the assay that extracts the
lead measurement from a sample of moss? and how different are the true
lead concentrations likely to be in different samples from the same location?

Turning the above heuristic argument into a specific set of ‘best’ predic-
tions is not straightforward, and the technical details are beyond the scope
of this book. But it turns out that a general method of spatial prediction,
with good statistical properties, can be represented by the formula

Ŝ(x) =

n∑

i=1

wi(x)Yi, (10.1)

where the Yi are the measured values and the weights, wi(x), can be
calculated from a model fitted to the variogram of the data. Typically, the
wi(x) will be large when the sampling location xi is close to the prediction
location x, and conversely. How large, and how close, depend on the exact
form of the variogram.

The formal status of equation (10.1) is that it defines, for any location
x, the mean of the distribution of the unknown value of S(x) given all of
the information provided by the data, under a model that assumes firstly
that S(x) follows a Normal distribution, and secondly that the correlation
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between values of S(x) at any two different locations can be described
by a function of the distance between those two locations. We call this
distribution the predictive distribution of S(x). In practice, equation (10.1)
can still give good results when these assumptions do not hold, but it is
most likely to do so when the measurements Yi are distributed more or
less symmetrically about their mean. When this is not the case, it is worth
considering whether to transform the data before fitting a theoretical model
to the variogram.

Figure 10.12 shows histograms of the 63 observed values of lead
concentrations and of log-transformed lead concentrations. The log-
transformation produces a somewhat more symmetric distribution.
Another, and arguably better, reason for favouring the log-transformation
is that changes in environmental policy would be more likely to engender
relative, rather than absolute, changes in pollution levels. For the formal
modelling of these data we therefore define the response, Yi, to be the
log-transformed lead concentration.

Figure 10.13 shows the estimated variogram of the log-transformed
data, together with a smooth curve that is the theoretical variogram of
a parametric model. The general form of this model is

V (u) = τ2 + σ2{1− exp(−u/φ)} : u ≥ 0. (10.2)

The curve in Figure 10.13 uses the maximum likelihood estimates of the
three parameters, namely τ2 = 0.083, σ2 = 0.1465 and φ = 19.3045. It is
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Fig. 10.12. Histograms of the 63 measured values of lead concentration (left-hand
panel) and log-transformed lead concentration (right-hand panel) from the Galicia
biomonitoring data.
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Fig. 10.13. Isotropic variogram (solid dots) of the lead pollution data and
theoretical model (smooth curve) estimated by maximum likelihood.

worth emphasizing that the fitted line in Figure 10.13 is not the conven-
tionally defined ‘line of best fit’ to the empirical variogram. As discussed in
Chapter 3, the best fit of any statistical model to a set of data is obtained
by using the likelihood function rather than by ad hoc methods. For the
linear regression models that we described in Sections 7.5 and 7.6, the
line of best fit is the maximum likelihood estimate; for the geostatistical
model that we are using for the Galicia lead pollution data, it emphatically
is not.

We now use the theoretical model (10.2) in conjunction with the
maximum likelihood estimates of the model parameters to calculate the
weighting functions wi(x) in (10.1) and so obtain a predicted value, Ŝ(x),
for any location x. This gives the predictive map shown in Figure 10.14.
Notice that the map captures the general spatial distribution of lead
concentrations that were apparent in the original data in Figure 10.3,
but additionally gives objectively determined predictions at all unsampled
locations.

Figure 10.14 gives no indication of how precisely or imprecisely we
have been able to predict the underlying lead concentration surface. Each
mapped value is the mean of the predictive distribution of S(x). In Chap-
ter 6, we emphasized the importance of quoting not just an estimated mean
but its associated confidence interval. We could use the simple ‘mean plus
and minus two standard errors’ rule to construct analogues of confidence
intervals for each of the mapped values, but because of the complexity of a
spatial surface by comparison with a single number, a better strategy is to
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Fig. 10.14. Mean predicted pollution surface for the Galicia lead pollution data.
The colour-scale runs from 2.0 (red) through yellow to 10.0 (white). Mapped values
range from 2.8 to 7.8. This figure is reproduced in colour in the colour plate section.

simulate a large number of surfaces from the joint predictive distribution
of S(x) for all locations x of interest, and use these to construct confidence
intervals for whatever properties of the complete surface are of interest.
Figure 10.15 shows three maps, corresponding to the lower quartile, median
and upper quartile of the predictive distribution at each location. Not
untypically, the median map (the second of the three panels of Figure 10.15)
is similar to the mean map shown in Figure 10.14 and either serves equally
well as a set of point predictions. Mapping lower and upper quartiles
is analogous to using a 50% confidence interval. Even with this low (by
conventional standards) level of coverage, the difference between the lower
and upper quartile maps is substantial: attempting to map a complex
spatial surface from only 63 values is an ambitious task.

A policy maker might be interested in how precisely we could estimate
the highest levels of pollution Galicia-wide. Reading off the maximum value
of the surface shown in Figure 10.14 would not be a sensible way to answer
this question. The maximum value on the map is approximately 8.0, but the
data include a value of 9.5 which, even allowing for measurement error in
the data, tells us that 8.0 must be an underestimate. Instead, we again use
the method of simulating from the predictive distribution. From each sim-
ulation, we record the maximum predicted value, and by running repeated
simulations build up a sample of values from the predictive distribution
of the Galicia-wide maximum lead concentration. Figure 10.16 shows the
resulting histogram, with vertical dashed lines defining a range containing
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Fig. 10.15. Lower quartile, median and upper quartile predicted pollution sur-
faces for the Galicia lead pollution data. The colour-scale runs from 2.0 (red)
through yellow to 10.0 (white). This figure is reproduced in colour in the colour
plate section.

95% of the values. This range is called a 95% prediction interval, and is
analogous to a 95% confidence interval for a model parameter. Note again
that the limits of uncertainty are wide, but better an honest prediction
than a dishonestly precise one.

The method of spatial prediction described in this section is called
‘ordinary kriging’ (see below for an explanation of the name). We make no
claim that this is always the best method to use. But it does have several
advantages over other, more ad hoc, methods. Firstly, when used in con-
junction with maximum likelihood estimation of the variogram parameters,
it is entirely objective. Secondly, and provided the underlying theoretical
model is correct, it can be shown to be the best possible method in the
specific sense of making the average squared error, {Ŝ(x)− S(x)}2, as small
as possible. The proviso of a correct theoretical model is important, but
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Fig. 10.16. Histogram of a sample of values from the predictive distribution of
the Galicia-wide maximum lead concentration. Vertical dashed lines define a range
containing 95% of the sampled values.

should not be interpreted literally. We can use all of the well-established
techniques of statistical modelling, including but not restricted to those
described in this book, to check whether the assumed model fits the data
well. If so, then even if not strictly correct, the model it can be taken to be
a reasonable approximation to the truth, and used to answer the scientific
questions posed by the data in hand.

10.6 Further reading

The branch of spatial statistics known as geostatistics has its origins in
the South African mining industry, where Professor D. G. Krige advocated
the use of statistical methods to assist in the practical problem of predict-
ing the likely yield that would be obtained from mining at a particular
region under consideration for possible exploitation; see, for example,
Krige (1951). Geostatistics is sometimes described as a self-contained
methodology with its own terminology and philosophy of inference that
are somewhat removed from the statistical mainstream; see, for example,
Chilès and Delfiner (1999). Books that describe geostatistical methods
within a mainstream statistical setting include Cressie (1991) and Diggle
and Ribeiro (2007). An easier read than any of these is Waller and Gotway
(2004, Chapter 8).

In this chapter, we have concentrated on geostatistical methods, and
have touched briefly on the analysis of lattice data. A third major branch
of spatial statistics is spatial point processes. This term refers to natural
processes that generate data in the form of a set of locations. Examples
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include the locations of individual trees in a forest (c.f. Figure 4.19), of
individual cases of a disease in a human or animal population, or of cell
nuclei in a section of biological tissue. Methods for analysing spatial point
process data are described in Diggle (2003), in Ilian, Penttinen, Stoyan and
Stoyan (2008) and in Waller and Gotway (2004, Chapter 5).

Spatial statistical methods involve technically sophisticated ideas from
the theory of stochastic processes, and computationally intensive methods
of data analysis. Our excuses for including them in this introductory book,
apart from personal bias, are two-fold. Modern advances in data-collection
technology, including microscopy, remotely sensed imaging and low-cost
GPS devices, are all making the availability of spatial data increasingly
common in many natural, biomedical and social scientific disciplines; allied
to this, spatial statistical methods are beginning to be incorporated into
geographical information systems. This is liberating for users who are not
formally trained statisticians, but at the same time potentially harmful if
it leads to unthinking analyses using data that are incompatible with the
implicit modelling assumptions that the software invokes.
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The R computing environment

A.1 Background material

R is an open-source product, built on the S language (Becker, Chambers
and Wilks, 1988) but with added statistical functionality provided by a
dedicated project team and a vast array of contributed packages. It is now
the software of choice for the international statistical research community
and is easily installed and run within most common operating systems,
including Windows, Linux and Mac.

Many instructional books on R have now been written, either covering
the basic system or linked to particular statistical applications. Examples in
the first category that we have found useful and accessible include Venables
and Smith (2002) or Dalgaard (2002). In the second category, probably the
best-known example is the classic text by Venables and Ripley (2002),
which covers many statistical topics at a fairly advanced level. A better
choice for beginners is Verzani (2004).

A straightforward R session consists of a series of commands whose
generic syntax echoes classical mathematical notation, as in y=f(x), mean-
ing that the R function f(.) processes the argument x to give the result
y. Functions can be almost arbitrarily complex, with many arguments,
each of which can be, amongst other things, a single number, a vector, a
matrix, a character string or combinations of the above combined into a
list. Similarly, the result can be any of the above, and can include graphical
and/or tabular output.

Functions can be of three kinds: in-built; user-written; or added-on as
components of a package. In Section A.3 we show an example of an R session
that illustrates the first two of these. A key feature of R is that the results of
a function become additional objects that can be manipulated in their own
right; for example, they can be displayed on the screen, written to a file for
safe keeping or used as arguments to other functions. Hence, the ‘equals’
sign in y=f(x) should be seen as an assignment of information rather than
a logical equality. Some users (amongst whom we count ourselves) prefer
to use the equivalent syntax y<-f(x) to emphasize this, but we are a dying
breed.
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A.2 Installing R

The R software, and contributed packages, can be accessed and installed by
visiting the R Project website, www.r-project.org, and navigating through
the various options. Here, we give step-by-step instructions for computers
running a Windows operating system. The differences for Mac or Linux
operating systems are minor.

To download the software, proceed as follows (notes are in parentheses).

(1) Go to http://www.r-project.org/

(2) Click on CRAN

(3) Click on the web-address for one of the ‘CRAN Mirrors’
(The choice is not critical, but you are recommended to choose a
mirror from a nearby country.)

(4) Inside the box ‘Download and install R’ click on Windows
(This downloads the binary version of the software – if you want the
source code, you are probably already enough of a software expert not
to need these step-by-step instructions.)

Many of the statistical methods that you are likely to want to use
are now available to you. If they are not, they may well be available
amongst the wide variety of add-on packages that have been written and
documented by statisticians world-wide. For example, the package splancs
offers additional functionality to analyse spatial point process data.

Depending on exactly how your computer is connected to the Web,
you may be able to install packages within an R session using the
install.packages() function. If this does not work, you can proceed as
follows.

(1) Go to http://www.r-project.org/

(2) Click on CRAN

(3) Click on the web-address for one of the ‘CRAN Mirrors’

(4) Click on Packages
(Under the heading ‘Available packages’ you can now scroll to the
package you want. At the time of writing, there were 2428 packages
available so you probably want to know what you are looking for
before you start – but see Task Views below)

(5) Click on the name of the package you want
(This takes you to a page where you can download the package and
assocated documentation.)

Once a package has been installed, its functionality and associated
documentation are accessible in exactly the same way as for built-in R
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functions. The R code available from the book’s web page includes several
examples.

If you don’t know exactly what package you need, you should find Task
Views helpful. These are guides to what packages are available under a
number of broad headings (26 at the time of writing, somewhat more
manageable than 2428). To access Task Views, proceed as follows:

(1) Go to http://www.r-project.org/

(2) Click on CRAN

(3) Click on the web-address for one of the ‘CRAN Mirrors’

(4) Click on Task Views

A.3 An example of an R session

To open an R session, you will need to activate the software, either by
clicking on its icon or, if you are working on a command-line system, typing
the command R. Within the R software itself, you need to supply a sequence
of commands, each one in response to the prompt >. You can do this
interactively, or you can prepare a sequence of R commands in a plain
text file and run them either by cutting-and-pasting or, more elegantly, by
instructing R to look in the file that contains your sequence of commands.
In our experience, a combination of these strategies works best. At an
exploratory stage, we tend to use R in interactive mode, whereas when
conducting a formal analysis we type and store sequences of commands
into text files to keep a permanent record of what we have done, the book’s
web page being a case in point.

In the following, lines beginning with the # symbol are comment lines:
their only purpose is to explain what the software is doing. Other lines are
command lines: each of these should generate a response from the software
if you enter them into an R window.

# assign the integers 1 to 100 to a vector, with name x, and

# print the first 5 values onto the screen

x<-1:100

x[1:5]

# simulate data from a quadratic regression model whose

# residuals are Normally distributed, standard deviation 12

mu<-2+0.5*x+0.01*x*x

z<-12*rnorm(100)

y<-mu+z

# display the first five (x,y) pairs (no assignment), with

# y-values rounded to 3 decimal places

cbind(x[1:5],round(y[1:5],3))

# draw a scatterplot of x against y
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plot(x,y)

# customize the scatterplot using optional arguments to the

# plot() function

plot(x,y,pch=19,col="red",cex=0.5,main="plot of x vs y")

# fit a linear regression model to the simulated data

# and summarize the result

fit1<-lm(y~x)

summary(fit1)

# list the names of the components of the R object that

# stores information about the fitted model

names(fit1)

# these components are individually accessible using the

# $ sign to indicate which component you want

fit1$coef

alpha<-fit1$coef[1]

beta<-fit1$coef[2]

# add the fitted regression line to the scatterplot

lines(x,alpha+beta*x)

# the plot now shows clearly that the linear model does not

# give good fit to the data, so we now fit the

# quadratic model and add the fitted quadratic curve

xsq<-x*x

fit2<-lm(y~x+xsq)

alpha<-fit2$coef[1]

beta<-fit2$coef[2]

gamma<-fit2$coef[3]

muhat<-alpha+beta*x+gamma*xsq

lines(x,muhat,col="blue",lwd=2)

# we’ll now write our own function to fit and plot the

# quadratic regression model

quadfit<-function(x,y,plot.result=F,x.plot=x) {

# Arguments:

# x: values of the explanatory variable

# y: values of the response variable

# plot.result: if T (true), plot of data and fitted

# regression curve is produced,

# if omitted plot is not produced because

# default is F (false)

# x.plot: values of the explanatory variable used to draw

# the fitted curve, if omitted uses same values as

# x, but sorted into ascending order

# Result:

# A standard R model object, plus (if plot.result=T) a plot

# of data and fitted regression curve drawn on the current
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# plotting device

xsq<-x*x

fit<-lm(y~x+xsq)

alpha<-fit$coef[1]; beta<-fit$coef[2]; gamma<-fit$coef[3]

if (plot.result==T){

plot.x<-sort(plot.x)

plot(x,y,cex=0.5, col="red",main= "data and quadratic fit")

y.plot=alpha+beta*x.plot+gamma*x.plot*x.plot

lines(x.plot,y.plot,lwd=2,col= "blue")

}

fit

}

# now use this function in default and non-default modes

quadfit(x,y)

# this writes the output to the screen but does not save it

# for future use, nor does it produce a plot

fit3<-quadfit(x,y,plot.result=T,x.plot=0.2*(0:500))

# the plotting option is now invoked by typing ‘plot.result=T’

# (T for true), also typing ‘plot.x=0.2*(0:500))’ gives a

# smoother curve than the default would have done,

# other output is assigned rather than displayed - but can be

# displayed if you wish, note that fit2 and fit3 should be

# identical - check by displaying summaries

summary(fit2)

summary(fit3)

# now quit R - you will be invited to save your work if you

# wish, in which case it will be loaded when you next run the

# R program

q()
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